【题目】如图,平面直角坐标系中,每个小正方形边长都是1.
(1)按要求作图: △ABC关于轴对称的图形△;
(2)将点先向上平移个单位,再向右平移个单位得到点的坐标为 ;
(3)△的面积为 ;
(4)若为轴上一点,连接 ,则△周长的最小值为 .
【答案】(1)见解析(2)(3,2)(3)(4)5+
【解析】
(1)根据关于y轴对称的性质画出△A1B1C1;
(2)根据点平移的坐标规律直接得出A2的坐标;
(3)用△ABC三个顶点所在网格线围成的矩形面积减去△ABC周围三个直角三角形的面积即可;
(4)找到点A关于x轴的对称点A3,连接A3B交x轴与点Q,此时△ABQ的周长最小.
解:(1)如图所示:
;
(2)将点A先向上平移个单位,再向右平移个单位得到点的坐标为;
(3)4×7-×4×5-×2×3-×1×7=;
(4)如图,作点A关于x轴的对称点A3,连接A3B交x轴与点Q,此时△ABQ的周长最小,
∴AQ+BQ=A3B==5,
AB==,
△ABQ的周长=5+.
故答案为:(1)见解析;(2)(3,2);(3);(4)5+.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知A(0,a)、B(b, 0),且a、b满足: ,点D为x正半轴上一动点
(1)求A、B两点的坐标
(2)如图,∠ADO的平分线交y轴于点C,点 F为线段OD上一动点,过点F作CD的平行线交y轴于点H,且∠AFH=45°, 判断线段AH、FD、AD三者的数量关系,并予以证明
(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y= 的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形中,,,.点从点出发,以的速度沿向点运动,设点的运动时间为.
(1)________;(用含的代数式表示)
(2)如图1,当为何值时,?并说明理由;
(3)如图2,当点从点开始运动,同时,点从点出发,以的速度沿向点运动,当运动到点或点运动到点时运动停止.是否存在这样的值,使得与全等?若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是( )
A.7
B.7.5
C.8
D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于( )
A. 110° B. 120° C. 130° D. 140°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.
(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.
甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件;
乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球;
(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为 ,你认同吗?请画树状图或列表计算说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com