精英家教网 > 初中数学 > 题目详情
14.用直角边是a,b斜边是c的四个全等直角三角形(图①)拼成②图.
观察图形并思考,填空:大正方形的面积可表示为:(a+b)2
(1)这个大正方形的面积还可以怎样表示?c2+2ab
(2)于是可列等式为(a+b)2=c2+2ab,将等式化简、整理得a2+b2=c2

分析 (1)大正方形的面积=小正方形的面积+4个直角三角形的面积;
(2)根据大正方形的面积不变列出等式并整理.

解答 解:(1)依题意得:大正方形的面积可表示为:c2+4×$\frac{1}{2}$ab=c2+2ab.
故答案是:c2+2ab.

(2)依题意得:(a+b)2=c2+2ab.
整理得:a2+b2=c2
故答案是:(a+b)2=c2+2ab.a2+b2=c2

点评 本题考查了勾股定理的证明.证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.如图,AB是⊙O的直径,D为OB的中点,E为AB延长线上一点,EF与⊙O相切于点F,点C在⊙O上,且四边形CDEF是平行四边形,若AB=8,则CF的长为$\sqrt{33}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知直线y=$\frac{1}{2}$x-2与x轴交于点B,与y轴交于点C,抛物线y=$\frac{1}{2}$x2+bx-2与x轴交于A、B两点(A在B的左侧),与y轴交于点C.
(1)求抛物线的解析式;
(2)点M是上述抛物线上一点,如果△ABM和△ABC相似,求点M的坐标;
(3)连接AC,求顶点D、E、F、G在△ABC各边上的矩形DEFG面积最大时,写出该矩形在AB边上的顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.试猜想CE、BF的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在△ABC中,DE∥BC,若AD=2,DB=4,则$\frac{DE}{BC}$的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,已知点A,B,C,D,E,F最边长为1的正六边形的顶点,在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,笑脸盖住的点的坐标可能为(  )
A.(5,2)B.(-4,-6)C.(3,-4)D.(-2,3)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.点P(1,-2)与P′(-1,2)的位置关系是(  )
A.关于x轴称轴B.关于y轴对称
C.关于原点中心对称D.关于直线y=x对称

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.
(1)若将线段AB绕点O顺时针旋转90°得到线段A′B′.试在图中画出线段A′B′;
(2)若线段A″B″与线段A′B′关于y轴对称,请画出线段A″B″;
(3)若点P是此平面直角坐标系内的一点,当点A、B′、B″、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.

查看答案和解析>>

同步练习册答案