A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
分析 由直角三角形斜边上的中线性质得出FD=$\frac{1}{2}$AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=$\frac{1}{2}$AB,延长FD=FE,①正确;
证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;
证明△ABD~△BCE,得出$\frac{BC}{AB}$=$\frac{BE}{AD}$,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=$\sqrt{2}$AE2,③正确;
根据△ABE是等腰直角三角形,AB=AC,AD⊥BC,求得∠BAD=∠CAD=22.5°,再根据三角形外角性质求得∠BFD=45°,即可得出∠DFE=45°,进而得到∠DFE=2∠DAC,故④正确;
根据AB=AC,∠BAH=∠CAH,AH=AH,判定△ABH≌△ACH,进而得到∠ACH=∠ABH=45°,再根据Rt△AEF中,∠AEF=45°,即可得到CH∥EF,故⑤正确.
解答 解:∵在△ABC中,AD和BE是高,
∴∠ADB=∠AEB=∠CEB=90°,
∵点F是AB的中点,
∴FD=$\frac{1}{2}$AB,
∵∠ABE=45°,
∴△ABE是等腰直角三角形,
∴AE=BE,
∵点F是AB的中点,
∴FE=$\frac{1}{2}$AB,
∴FD=FE,①正确;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠C,
∴AB=AC,
∵AD⊥BC,
∴BC=2CD,∠BAD=∠CAD=∠CBE,
在△AEH和△BEC中,
$\left\{\begin{array}{l}{∠AEH=∠CEB}\\{AE=BE}\\{∠EAH=∠CBE}\end{array}\right.$,
∴△AEH≌△BEC(ASA),
∴AH=BC=2CD,故②正确;
∵∠BAD=∠CBE,∠ADB=∠CEB,
∴△ABD~△BCE,
∴$\frac{BC}{AB}$=$\frac{BE}{AD}$,即BC•AD=AB•BE,
∵$\sqrt{2}$AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,
∴BC•AD=$\sqrt{2}$AE2,故③正确;
∵△ABE是等腰直角三角形,
∴∠BAE=45°,
又∵AB=AC,AD⊥BC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=22.5°,
∵AF=DF,
∴∠FAD=∠FDA=22.5°,
∴∠BFD=45°,
∴∠DFE=90°-45°=45°,
∴∠DFE=2∠DAC,故④正确;
∵AB=AC,∠BAH=∠CAH,AH=AH,
∴△ABH≌△ACH,
∴∠ACH=∠ABH=45°,
又∵Rt△AEF中,∠AEF=45°,
∴CH∥EF,故⑤正确.
故选:D.
点评 本题考查了相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的判定与性质以及等腰直角三角形的性质的综合应用,证明三角形相似和三角形全等是解决问题的关键.解题时注意,根据面积法也可以得出BC•AD=$\sqrt{2}$AE2成立.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5cosα m | B. | $\frac{5}{cosα}$m | C. | 5sinα m | D. | $\frac{5}{sinα}$m |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 7 | B. | 11 | C. | 13 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com