精英家教网 > 初中数学 > 题目详情
已知一元二次方程ax2+bx+c=0(a≠0).下列说法:①若a+b+c=0,则b2-4ac≥0;②若方程两根为-1和2,则2a+c=0;③若2a+b=0,且方程有一根大于2,则另一根必为负数;④若b=2a+3c,则方程有两个不相等的实根.其中正确的有(  )
分析:由于a+b+c=0,则x=1,即原方程有解,所以b2-4ac≥0;把x=-1和x=2分别代入方程得到a-b+c=0,4a+2b+c=0,然后经过整理可得到2a+c=0;根据根与系数的关系得到两个之和为-
b
a
,把b=-2a代入得到两个之和为2,则方程有一根大于2,则另一根必为负数;把b=2a+3c代入b2-4ac得到b2-4ac=(2a+3c)2-4ac=4(a+c)2+5c2,>0,根据判别式的意义可得到方程有两个不相等的实根.
解答:解:若a+b+c=0,则x=1,所以b2-4ac≥0,所以①正确;
把x=-1代入方程得到a-b+c=0,把x=2代入方程得4a+2b+c=0,则6a+3c=0,即2a+c=0,所以②正确;
两个之和为-
b
a
,而b=-2a,则两个之和为2,由于方程有一根大于2,则另一根必为负数,所以③正确;
由b=2a+3c,b2-4ac=(2a+3c)2-4ac=4(a+c)2+5c2,>0,所以④正确.
故选D.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
.也考查了一元二次方程根的判别式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•西城区一模)已知一元二次方程x2+ax+a-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为
13
时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
3
13
2
?若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2+ax+b=0①,x2+bx+a=0②,方程①与方程②有且只有一个公共根,则a与b之间应满足的关系式为
a+b+1=0
a+b+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2axa-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012届北京市西城区九年级一模数学卷(解析版) 题型:解答题

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

同步练习册答案