精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线与⊙O交于B、C两点,则弦BC的长的最小值为   
24。
∵直线必过点D(3,4),

∴最短的弦CD是过点D且与该圆直径垂直的弦。
∵点D的坐标是(3,4),∴OD=5。
∵以原点O为圆心的圆过点A(13,0)。
∴圆的半径为13。∴OB=13。∴BD=12。
∴BC的长的最小值为24。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,M是轴正半轴上一点,⊙M与轴的正半轴交于A、B两点,A在B的左侧,且OA、OB的长是方程的两根,ON是⊙M的切线,N为切点,N在第四象限.

(1)求⊙M的直径;
(2)求直线ON的函数关系式;
(3)在轴上是否存在一点T,使△OTN是等腰三角形?若存在,求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线与反比例函数的图象交于A、B两点,与x 轴、y轴分别相交于C、D两点。

(1)如果点A的横坐标为1,利用函数图象求关于x的不等式的解集;
(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下图:⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有(    )
A.3 个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=900,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.

(1)求证:BD=BF;
(2)若CF=1,cosB=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线MN交⊙O于A、B两点,AC是直径,AD平分∠CAM交⊙O于D,过
D作DE⊥MN于E.

(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为
A.B.C.D.

查看答案和解析>>

同步练习册答案