如图,在△ABC中,∠C=90°,∠B=30°,用直尺和圆规作出∠A的平分线与BC边交于点D(不写作法,保留作图痕迹)。在新图形中,你发现了什么?请写出两条。
科目:初中数学 来源: 题型:
如图N212,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,函数与的图象相交于点A(1,2)和点B,当y1>y2时的变量x的取值范围是( )
A、x>1 B、-1<x<0 C、-1<x<0或x>1 D、x<-1或0<x<1
查看答案和解析>>
科目:初中数学 来源: 题型:
类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。
原题:如图1,在⊙O中,MN是直径,AB⊥MN于点B,CD⊥MN于点D,∠AOC=90°,AB=3,CD=4,则BD= 。
⑴尝试探究:如图2,在⊙O中,MN是直径,AB⊥MN于点B,CD⊥MN于点D,点E在MN上,∠AEC=90°,AB=3,BD=8,BE:DE=1:3,则CD= (试写出解答过程)。
⑵类比延伸:利用图3,再探究,当A、C两点分别在直径MN两侧,且AB≠CD,AB⊥MN于点B,CD⊥MN于点D,∠AOC=90°时,则线段AB、CD、BD满足的数量关系为 。
⑶拓展迁移:如图4,在平面直角坐标系中,抛物线经过A(m,6),B(n,1)两点(其中0<m<3),且以y轴为对称轴,且∠AOB=90°,①求mn的值;②当S△AOB=10时,求抛物线的解析式。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,抛物线与直线交于点A、B,M是抛物线上一个动点,连接OM。
(1) 当M为抛物线的顶点时,求△OMB的面积;
(2) 当点M在抛物线上,△OMB的面积为10时,求点M的坐标;
(3) 当点M在直线AB的下方且在抛物线对称轴的右侧,M运动到何处时,△OMB的面积最大;
查看答案和解析>>
科目:初中数学 来源: 题型:
已知直线AC: 与直线BC:相交于点C,分别交x轴于点A、B,P为x轴上的一点,设P(m,0),以点P为圆心作圆:
(1)若-4<m <6.当m=____ ____时,⊙P同时与AC、BC相切;
(2)设⊙P的半径为3,当m=______ ____时,⊙P与直线AC、直线BC中的一条相切。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com