1£®Ä³Æ·ÅÆÊÖ»ú£¬È¥Äêÿ̨µÄÊÛ¼Ûy£¨Ôª£©ÓëÔ·ÝxÖ®¼äÂú×ã¹Øϵy=-50x+2600£¬È¥ÄêµÄÔÂÏúÁ¿p£¨ÍòÔª£©ÓëÔ·ÝxÖ®¼ä³ÉÒ»´Îº¯Êý¹Øϵ£¬ÆäÖеÚÒ»¼¾¶ÈµÄÏúÁ¿Çé¿öÈç±í£º
Ô·ݣ¨x£©1ÔÂ2ÔÂ3ÔÂ
ÏúÊÛÁ¿£¨p£©3.9Íǫ̀4.0Íǫ̀4.1Íǫ̀
£¨1£©Çóp¹ØÓÚxµÄº¯Êý¹Øϵʽ£»
£¨2£©ÇóÈ¥Äê12Ô·ݵÄÏúÊÛÁ¿ÓëÏúÊÛ¼Û¸ñ£»
£¨3£©½ñÄê1Ô·ݱÈÈ¥Äê12Ô·ݸÃÆ·ÅÆÊÖ»úµÄÊÛ¼ÛϽµµÄ°Ù·ÖÂÊΪm£¬ÏúÊÛÁ¿Ï½µµÄ°Ù·ÖÂÊΪ1.5m£¬½ñÄê2Ô·ݣ¬¾­ÏúÉ̶ԸÃÊÖ»úÒÔ1Ô·ݼ۸ñµÄ°ËÕÛÏúÊÛ£¬ÕâÑù2Ô·ݵÄÏúÊÛÁ¿±È½ñÄê1Ô·ÝÔö¼ÓÁË1.5Íǫ̀£¬ÏúÊÛ¶îΪ6400ÍòÔª£¬ÇómµÄÖµ£®

·ÖÎö £¨1£©Ö±½ÓÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ¼´¿É£»
£¨2£©½«x=12·Ö±ð´úÈëp=0.1x+3.8¡¢y=-50x+2600¿ÉµÃ£»
£¨3£©·Ö±ð±íʾ³ö1£¬2Ô·ݵÄÏúÁ¿ÒÔ¼°ÊÛ¼Û£¬½ø¶øÀûÓýñÄê2Ô·ÝÕâÖÖÆ·ÅÆÊÖ»úµÄÏúÊÛ¶îΪ6400ÍòÔª£¬µÃ³öµÈʽÇó³ö¼´¿É£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬Éèp=kx+b£¬
½«x=1¡¢p=3.9£¬x=2¡¢p=4.0´úÈ룬µÃ£º$\left\{\begin{array}{l}{k+b=3.9}\\{2k+b=4}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=0.1}\\{b=3.8}\end{array}\right.$£¬
¡àp¹ØÓÚxµÄº¯Êý¹ØϵʽΪ£ºp=0.1x+3.8£»

£¨2£©µ±x=12ʱ£¬ÏúÊÛÁ¿p=0.1¡Á12+3.8=5£»
ÿ̨µÄÊÛ¼Ûy=-50¡Á12+2600=2000£»

£¨3£©¸ù¾ÝÌâÒ⣬1Ô·ݵÄÊÛ¼ÛΪ2000£¨1-m£©Ôª£¬Ôò2Ô·ݵÄÊÛ¼ÛΪ0.8¡Á2000£¨1-m£©Ôª£¬
1Ô·ݵÄÏúÁ¿Îª5£¨1-1.5m£©Íǫ̀£¬2Ô·ݵÄÏúÁ¿Îª[5£¨1-1.5m£©+1.5]Íǫ̀£¬
ÓÉÌâÒâµÃ£º0.8¡Á2000£¨1-m£©¡Á[5£¨1-1.5m£©+1.5]=6400£¬
½âµÃ£ºm1=$\frac{5}{3}$£¨Éᣩ£¬m2=$\frac{1}{5}$£¬
¡àm=$\frac{1}{5}$£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ¼°Ò»Ôª¶þ´Î·½³ÌµÄÓ¦Ó㬸ù¾ÝÌâÒâ±íʾ³ö2Ô·ݵÄÏúÁ¿ÓëÊÛ¼ÛÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ôڰ뾶Ϊ5cmµÄ¡ÑOÖУ¬Ô²ÐÄOµ½ÏÒABµÄ¾àÀëΪ4cm£¬ÔòÏÒABµÄ³¤Îª£¨¡¡¡¡£©
A£®3cmB£®4cmC£®5cmD£®6cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬BC=6£¬¡ÏA=90¡ã£¬¡ÏB=70¡ã£®°Ñ¡÷ABCÑØBC·½ÏòƽÒƵ½¡÷DEFµÄλÖã¬ÈôCF=2£¬ÔòÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®BE=2B£®¡ÏF=20¡ãC£®AB¡ÎDED£®DF=6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Çëд³ö¶þÔªÒ»´Î·½³Ìx+y=3µÄÒ»¸öÕûÊý½â£º$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$£¨´ð°¸²»Î¨Ò»£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚ?ABCDÖУ¬¹ýµãD×÷DE¡ÍABÓÚµãE£¬µãFÔÚCDÉÏ£¬CF=AE£¬Á¬½ÓBF£¬AF£®
£¨1£©ÇóÖ¤£ºËıßÐÎBFDEÊǾØÐΣ»
£¨2£©ÈôAD=DF£¬ÇóÖ¤£ºAFƽ·Ö¡ÏBAD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬AD¡ÎBC£¬AM¡ÍBC£¬´¹×ãΪM£¬AN¡ÍDC£¬´¹×ãΪN£¬Èô¡ÏBAD=¡ÏBCD=120¡ã£¬AM=AN=$\sqrt{3}$£¬
¢ÙÇóÖ¤£ºËıßÐÎABCDÊÇÁâÐΣ»
¢ÚÇóËıßÐÎABCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªÒ»´Îº¯Êýy=kx+bµÄͼÏóÈçͼËùʾ£¬µ±x£¼2ʱ£¬yµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®y£¼-4B£®-4£¼y£¼0C£®y£¼2D£®y£¼0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆË㣺
£¨1£©-2xy2£¨x2+xy+3£©+2xy•x2y
£¨2£©£¨x+3y£©£¨x-3y£©+£¨3y+1£©2-x£¨x-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬ÒÑÖª£ºÈçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬ÓÐÁâÐÎOABC£¬AµãµÄ×ø±êΪ£¨10£¬0£©£¬¶Ô½ÇÏßOB¡¢ACÏཻÓÚDµã£¬Ë«ÇúÏßy=$\frac{k}{x}$£¨x£¾0£©¾­¹ýDµã£¬½»BCµÄÑÓ³¤ÏßÓÚEµã£¬ÇÒOB•AC=160£¬ÓÐÏÂÁÐËĸö½áÂÛ£º
¢ÙË«ÇúÏߵĽâÎöʽΪy=$\frac{40}{x}$£¨x£¾0£©£»
¢ÚEµãµÄ×ø±êÊÇ£¨5£¬8£©£»
¢Ûsin¡ÏCOA=$\frac{4}{5}$£»
¢ÜAC+OB=12$\sqrt{5}$£®
ÆäÖÐÕýÈ·µÄ½áÂÛÓТۢܣ¨ÌîÉÏÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸