精英家教网 > 初中数学 > 题目详情
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④3a+c=0;则其中说法正确的是(  ).
A.①②B.②③C.①②④D.②③④
C.

试题分析:∵二次函数的图象开口向上,
∴a>0,
∵二次函数的图象交y轴的负半轴于一点,
∴c<0,
∵对称轴是中线x=-1,
∴-=-1,∴b=2a>0,
∴abc<0,∴①正确;
∵b=2a,
∴2a-b=0,∴②正确;
把x=2代入y=ax2+bx+c得:y=4a+2b+c,
从图象可知,当x=2时y<0,
即4a+2b+c<0,∴③错误;
当x=-3时,y=9a-3b+c=0
又b=2a
所以:9a-6a+c=3a+c=0,∴4正确;
故选C.
考点: 二次函数图象与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

二次函数的图象的顶点坐标是(   )
A.(1,3)B.(1,3)C.(1,3)D.(1,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.

(1)求该抛物线的解析式.
(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某职业学校三名学生到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。
A:如果以10元/千克的价格销售,那么每天可售出300千克.
B:如果以13元/千克的价格销售,那么每天可获取利润750元.
C:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到600元?【利润=销售量×(销售单价-进价)】
(3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),点B的坐标为,与y轴交于点,顶点为D。

(1)求抛物线的解析式及顶点D坐标;
(2)联结AC、BC,求∠ACB的正切值;

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1________y2(填“>”、“<”、“=”).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=3x2,y=-3x2,y=x2+3共有的性质是
A.开口向上B.对称轴是y轴
C.都有最高点D.y随x值的增大而增大

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列关于抛物线的关系说法中,正确的是( )
A.它们的形状相同,开口也相同;
B.它们都关于轴对称;
C.它们的顶点不相同;
D.点()既在抛物线上也在

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=2(x+1)2-3的图象的对称轴是(   )
A.直线x=-1B.直线x=1C.直线x=-3D.直线x=3

查看答案和解析>>

同步练习册答案