【题目】(1)如图1,在△ABC中,∠A<90°,P是BC边上的一点,P1,P2是点P关于AB、AC的对称点,连结P1P2,分别交AB、AC于点D、E.
(1)若∠A=52°,求∠DPE的度数;
(2)如图2,在△ABC中,若∠BAC=90°,用三角板作出点P关于AB、AC的对称点P1、P2,(不写作法,保留作图痕迹),试判断点P1,P2与点A是否在同一直线上,并说明理由.
【答案】(1)∠DPE=76°;(2)详见解析.
【解析】
(1)利用轴对称的性质证明:∠DPP1+∠EPP2=∠A,根据∠DPE=180°-(∠PDE+∠DEF)计算即可;
(2)点P1,P2与点A在同一条直线上.证明∠PAP1+∠PAP2=180°即可.
解:(1)∵P1,P2是点P关于AB、AC的对称点,
∴PD=P1D,PE=P2E,
∴∠EDP=2∠DPP1,∠DEP=2∠EPP2,
∵∠DPP1+∠DPE+∠EPP2+∠A=180°①,
2∠DPP1+∠DPE+2∠EPP2=180°②
②-①得:∠DPP1+∠EPP2=∠A,
∵∠A=52°,
∴∠DPP1+∠EPP2=52°,
∴∠DPE=180°-(∠PDE+∠DEF)
=180°-2(∠DPP1+∠EPP2)
=180°-104°=76°.
(2)点P1,P2与点A在同一条直线上.
理由如下:连接AP,AP1,AP2.
根据轴对称的性质,可得∠4=∠1,∠3=∠2,
∵∠BAC=90°,即∠1+∠2=90°,
∴∠3+∠4=90°,
∴∠1+∠2+∠3+∠4=180°,即∠P1AP2=180°,
∴点P1,P2与点A在同一条直线上.
科目:初中数学 来源: 题型:
【题目】如图,用大小相同的小正方体从左至右摆放成几何体,若小正方体的棱长为1cm,则第①个几何体的表面积为6cm2,第②个几何体的表面积为18cm2,第③个几何体的表面积为36cm2,第④个几何体的表面积为60cm2,…,按照这样的规律,第n个几何体的表面积为________cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )
①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x 3 360
②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 4(120 m) 360
③A 型盒 72 个
④B 型盒中正方形纸板 48 个
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个图形,通过两种不同的方法计算它们的面积,可以得到一个数学等式,例如图1可以得到
(1)类似图1的数学等式,写出图2表示的数学等式;
(2)若, ,用上面得到的数学等式乘的值;
(3)小明同学用图3中的张边长为的正方形,张边长为的正方形,z张边长为、的长方形拼出一个面积为的长方形,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B>90°,CD为∠ACB的角平分线,在AC边上取点E,使DE=DB,且∠AED>90°.若∠A=α,∠ACB=β,则( )
A.∠AED=180°﹣α﹣βB.∠AED=180°﹣α﹣β
C.∠AED=90°﹣α+βD.∠AED=90°+α+β
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 根据题意,完成推理填空:如图,AB∥CD,∠1=∠2,试说明∠B=∠D.
解:∵∠1=∠2(已知)
∴ (內错角相等,两直线平行)
∴∠BAD+∠B=180°(两直线平行,同旁内角互补)
∵AB∥CD
∴ + =180°,
∴∠B=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=( )
A. 5 B. 4 C. 3+ D. 2+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们已经知道,有一个内角是直角的三角形是直角三角形.其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家已发现在一个直角三角形中,两个直角边边长的平方和等于斜边长的平方.如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a2+b2=c2.已知,如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE.
(1)DE的长为 .
(2)动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒,求当t为何值时,△ABP和△DCE全等?
(3)若动点P从点B出发,以每秒1个单位的速度仅沿着BE向终点E运动,连接DP.设点P运动的时间为t秒,是否存在t,使△PDE为等腰三角形?若存在,请直接写出t的值;否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com