精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

【答案】C

【解析】∵四边形ABCD是正方形,

∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.

∵△AEF等边三角形,

∴AE=EF=AF,∠EAF=60°.

∴∠BAE+∠DAF=30°.

在Rt△ABE和Rt△ADF中,

,

Rt△ABE≌Rt△ADF(HL),

∴BE=DF(故①正确).

∠BAE=∠DAF,

∴∠DAF+∠DAF=30°,

即∠DAF=15°(故②正确),

∵BC=CD,

∴BC-BE=CD-DF,即CE=CF,

∵AE=AF,

∴AC垂直平分EF.(故③正确).

设EC=x,由勾股定理,得

EF=x,CG=x,

AG=AEsin60°=EFsin60°=2×CGsin60°=x,

∴AC=

∴AB=

BE=

∴BE+DF= x,(故④错误),

∵S△CEF=

S△ABE=

∴2S△ABE==S△CEF,(故⑤正确).

综上所述,正确的有4个,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为_________.(π取3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个多边形内角和是1080°,则这个多边形是( )
A.五边形
B.六边形
C.七边形
D.八边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCDAB=9,AD=4. ECD边上一点,CE=6.

(1)求AE的长.

(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE. 设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是( )
A.10°
B.20°
C.40°
D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.

(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;

(2)求小彬家与学校之间的距离;

(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察探索:

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

x1)(x4+x3+x2+x+1)=x51

根据规律填空:(x1)(xn+xn1+…+x+1)=__.(n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点M与点N 是直线l上的两点(点M在点N的上方).

①亮亮发现:若点M坐标为(2,3),点N坐标为(2,﹣4),则MN的长度为_____②亮亮经过多次取l上的两点后,他归纳出这样的结论:若点M坐标为(t,m),点N坐标为(t,n),当m>n时,MN的长度可表示为______

(2)如图2,四边形OABC的顶点O是坐标原点,点A在第一象限,OAB=90,OA=AB,点C在第四象限,B点的坐标为(6,0),且OC=5.点P是线段OB上的一个动点(点P不与点0、B重合),过点P作与y轴平行的直线l,设点P横坐标为t.

①已知当t=4时,直线l恰好经过点C,求点A、C两点的坐标;

②在①的条件下,直线l上有一点M,当MB=OC时,直接写出满足条件的点M坐标;

③如图3延长线段BAy轴于点D将线段BD顺时针旋转60,D点的对应点为点E,是否存 x轴上的点Q,使得QD+QE的值最小,若存在请求出点Q的坐标,并求出OQD的度数; 若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】O与直线l有两个交点,且圆的半径为3,则圆心O到直线l的距离不可能是(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案