精英家教网 > 初中数学 > 题目详情
3.如图,在Rt△ABC中,∠C=90°,AC=3,将△ACD沿CD翻折,使点A落在BC的中点E处,则点D到BC的距离是2.

分析 先依据翻折的性质可得到AC=EC,然后求得BC的长,于是可求得△ABC的面积,然后再证明:S△ACD=S△ECD=S△DBE,从而可求得△DEB的面积,最后依据三角形的面积公式可求得点D到BC的距离.

解答 解:∵由翻折的性质可知:S△ACD=S△ECD,AC=CE=3,E为BC的中点,
∴BC=6,S△DBE=S△ECD
∴S△DEB=$\frac{1}{3}$S△ACB=$\frac{1}{3}×\frac{1}{2}$×3×6=3.
∴△DEB的高=$\frac{3×2}{3}$=2.
∴点D到BC的距离是2.
故答案为;2.

点评 本题主要考查的是翻折变换,依据翻折变换的性质以及等底同高的两三角形面积相等求得△BDE的面积是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.已知,关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是(  )
A.m<3B.m≤3C.m<3且m≠2D.m≤3且m≠2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,点A在x轴的正半轴上,过点A作∠OAB=45°,在角的一边上截取AB=3,过点B作BC∥x轴交y轴于点C,D在线段BC上,且BD=$\frac{1}{4}$OA=$\sqrt{2}$,E,F分别是线段OA,AB上的两动点,且始终保持∠DEF=45°.

(1)填空:点D的坐标为($\frac{3\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$);
(2)设OE=x,AF=y,试确定y与x之间的函数关系式;
(3)当△AEF是等腰三角形时,将△AEF沿EF边折叠,得到△A′EF,试求折叠后点A′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=$\frac{4}{5}$t2;③cos∠ABE=$\frac{3}{5}$;④当t=$\frac{29}{2}$秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是$\sqrt{10}$或$\frac{51}{5}$; 其中正确的结论是②④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ABC中,∠ABC=90°,以AB为直径作半圆O,交斜边AC于点D,过点D作半圆O的切线DE,交BC于点E.
(1)求证:点E是BC的中点;
(2)过点C作AB的平行线l,l与BD的延长线交于点F,若$\frac{FD}{DB}$=$\frac{1}{3}$,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,四边形ABCD和AEGF都是菱形,∠A=60°,AD=3,点E,F分别在AB,AD边上(不与端点重合),当△GBC为等腰三角形时,AF的长为3-$\sqrt{3}$或2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若变量y与变量x的函数关系是y=-(x-m)2-m2+5,在-1≤x≤3范围内的最大值为4,则常数m的值是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、BE.
特例探究:如图①,若△ADE与△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由;
拓展应用:如图②,在△ADE与△DCF中,AE=DF,ED=FC,且BE=4,则四边形ABFE的面积为8.

查看答案和解析>>

同步练习册答案