精英家教网 > 初中数学 > 题目详情
经过x轴上A(-1,0)、B(3,0)两点的抛物线y=ax2+bx+c交y轴于点C,设抛物线的顶点为D,若以DB为直径的⊙G经过点C,求解下列问题:
(1)用含a的代数式表示出C,D的坐标;
(2)求抛物线的解析式;
(3)如图,当a<0时,能否在抛物线上找到一点Q,使△BDQ为直角三角形?你能写出Q点的坐标吗?

【答案】分析:(1)可根据A,B的坐标,用交点式二次函数通式来设出抛物线的解析式,进而可得出D,C的坐标.
(2)本题的关键是求出a的值.可通过相似三角形来求解,过D作DE⊥y轴于E,易知△DEC∽△COB,可通过得出的关于DE,CO,EC,OB的比例关系式,求出a的值.进而可求出抛物线的解析式.
(3)本题要分两种情况进行讨论.
①当∠BDQ=90°时,此时DQ是圆G的切线,设DQ交y轴于M,那么可通过求直线DM的解析式,然后联立抛物线的解析式即可求出Q点的坐标.
②当∠DBQ=90°时,可过Q作x轴的垂线,设垂足为F,先设出Q点的坐标,然后根据相似三角形DHB和BFQ得出的关于DH,BF,BH,FQ的比例关系式,求出Q点的坐标.
③当∠BQD=90°时,显然此时Q,C重合,因此Q点的坐标即为C点的坐标.
综上所述可得出符合条件的Q点的坐标.
解答:解:(1)设抛物线的解析式为y=a(x+1)(x-3)
则y=a(x2-2x-3)=a(x-1)2-4a
则点D的坐标为D(1,-4a)
点C的坐标为C(0,-3a)

(2)如图①所示,过点D作DE⊥y轴于E,如图①所示:
则有△DEC∽△COB


∴a2=1a=±1
故抛物线的解析式为y=x2-2x-3或y=-x2+2x+3;

(3)a<0时,a=-1,抛物线y=-x2+2x+3,
这时可以找到点Q,很明显,点C即在抛物线上,
又在⊙G上,∠BCD=90°,这时Q与C点重合,点Q坐标为Q(0,3).
如图②,若∠DBQ为90°,作QF⊥y轴于F,DH⊥x轴于H
可证Rt△DHB∽Rt△BFQ

则点Q坐标(k,-k2+2k+3)

化简为2k2-3k-9=0
即(k-3)(2k+3)=0
解之为k=3或
得Q坐标:
若∠BDQ为90°,
如图③,延长DQ交y轴于M,
作DE⊥y轴于E,DH⊥x轴于H
可证明△DEM∽△DHB


,点M的坐标为DM所在的直线方程为
与y=-x2+2x+3的解为
得交点坐标Q为
即满足题意的Q点有三个,(0,3),
点评:本题主要考查了二次函数解析式的确定、相似三角形的判定和应用、函数图象交点等知识,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c(a≠O)经过X轴上的两点A(x1,0)、B(x2,0)和y轴上的点C(0,-
3
2
),⊙P的圆心P在y轴上,且经过B、C两点,若b=
3
a,AB=2
3

(1)求抛物线的解析式;
(2)设D在抛物线上,且C,D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P,精英家教网并说明理由;
(3)设直线BD交⊙P于另一点E,求经过E点的⊙P的切线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+2ax-2b+1和y=-x2+(a-3)x+b2-1的图象都经过x轴上两个不同的点M,N,求a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在平面直角坐标系中,入射光线经过x轴上点A(-3,0),由y轴上点B反射,反射光线经过点C(-1,3),则B点的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,经过x轴上A(-1,0)、B(3,0)两点的抛物线y=ax2+bx+c(a≠0)交y轴的精英家教网正半轴于点C,设抛物线的顶点为D.
(1)用含a的代数式表示出点C、D的坐标;
(2)若∠BCD=90°,请确定抛物线的解析式;
(3)在(2)的条件下,能否在抛物线上找到另外的点Q,使△BDQ为直角三角形?如果能,请直接写出点Q的坐标;如不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

函数y=ax2+bx-1(a≠0)的图象经过y轴上一点,则这个点的坐标是
(0,-1)
(0,-1)

查看答案和解析>>

同步练习册答案