精英家教网 > 初中数学 > 题目详情

【题目】制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y),从加热开始计算的时间为xmin).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃

1)分别求出将材料加热和停止加热进行操作时,yx的函数关系式;

2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

【答案】1220分钟

【解析】解:(1)材料加热时,设y=ax+15a≠0),

由题意得60=5a+15

解得a=9

则材料加热时,yx的函数关系式为y=9x+150≤x≤5).

停止加热时,设y=k≠0),

由题意得60=

解得k=300

则停止加热进行操作时yx的函数关系式为y=x≥5);

2)把y=15代入y=,得x=20

因此从开始加热到停止操作,共经历了20分钟.

答:从开始加热到停止操作,共经历了20分钟.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC,垂足为D,点EAB上,EFBC,垂足为F

(1)ADEF平行吗?为什么?

(2)如果∠1=∠2,且∠3115°,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC内接于⊙P,AB是⊙P的直径,A(﹣1,0)C(3,2 ),BC的延长线交y轴于点D,点F是y轴上的一动点,连接FC并延长交x轴于点E.
(1)求⊙P的半径;
(2)当∠A=∠DCF时,求证:CE是⊙P的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】7分)如图,正比例函数的图象与反比例函数 在第一象限

的图象交于点,过点作轴的垂线,垂足为,已知的面积为1.

1)求反比例函数的解析式;

2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调查各兴趣小组活动情况,为此校学生会委托小容、小易进行一次随机抽样调查.根据采集到的数据,小容绘制的统计图1,小易绘制的统计图2(不完整)如下: 请你根据统计图1、2中提供的信息,

解答下列问题:
(1)写出2条有价值信息(不包括下面要计算的信息);
(2)这次抽样调查的样本容量是多少?在图2中,请将小易画的统计图中的“体育”部分的图形补充完整;
(3)爱好“书画”的人数占被调查人数的百分数是多少?估计实验中学现有的学生中,有多少人爱好“书画”?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB=20°,∠AOE=86°,OB平分∠AOC,OD平分∠COE.

(1)∠COD的度数是______;

(2)若以O为观察中心,OA为正东方向,射线OD在什么位置?

(3)若以OA为钟面上的时针,OD为分针,且OA正好在“时刻3”的下方不远,求出此时的时刻.(结果精确到分钟)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠A0B=420,点P∠A0B内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2OAM,交OBN,P1P2=15,则△PMN的周长为________,∠MPN ________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.

(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?

(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.

查看答案和解析>>

同步练习册答案