【题目】如图,AB分别是⊙O的直径,AC是弦,DC是⊙O的切线,C为切点,AD⊥DC于点D.
(1)已知∠ACD=a,求∠AOC的大小;
(2)求证:AC2=AB·AD.
【答案】(1)2α;(2)证明见解析.
【解析】
试题分析:(1)由CD是⊙O的切线得到∠OCD=90°,即∠ACD+∠ACO=90°,利用OC=OA得到∠ACO=∠CAO,然后利用三角形的内角和即可证明题目的结论;
(2)如图,连接BC.由AB是直径得到∠ACB=90°,然后利用已知条件可以证明在Rt△ACD∽Rt△ABC,接着利用相似三角形的性质即可解决问题.
试题解析:(1)∵CD是⊙O的切线,
∴∠OCD=90°,
即∠ACD+∠ACO=90°,①
∵OC=OA,
∴∠ACO=∠CAO,
∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,
两边除以2得:∠AOC+∠ACO=90°,②
由①,②,得:∠ACD-∠AOC=0,
即∠AOC=2∠ACD=2α;
(2)如图,连接BC.
∵AB是直径,
∴∠ACB=90°,
在Rt△ACD与Rt△ABC中,
∵∠AOC=2∠B,
∴∠B=∠ACD,
∴Rt△ACD∽Rt△ABC,
∴,即AC2=AB·AD.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ,CP,若AQ⊥CP,求t的值;
(3)试证明:PQ的中点在△ABC的一条中位线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 平移不改变图形的形状,旋转使图形的形状发生改变
B. 平移和旋转的共同之处是改变图形的位置和大小
C. 一对对应点与旋转中心的距离相等
D. 由旋转得到的图形也一定可以通过平移得到
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com