精英家教网 > 初中数学 > 题目详情

为了探索代数式的最小值,

小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于       ,此时        ;

(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?

(选填:函数思想,分类讨论思想、类比思想、数形结合思想)

(3)请你根据上述的方法和结论,试构图求出代数式的最小值.

 

【答案】

(1)10,;(2)数形结合思想;(3)13.

【解析】

试题分析:(1)根据两点之间线段最短可知AC+CE的最小值就是线段AE的长度.过点E作EF∥BD,交AB的延长线于F点.在Rt△AEF中运用勾股定理计算求解.

(2)小张巧妙的运用了数形结合思想.

(3)由(1)的结果可作BD=12,过点A作AF∥BD,交DE的延长线于F点,使AB=2,ED=3,连接AE交BD于点C,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值就是代数式的最小值.

试题解析:(1)过点E作EF∥BD,交AB的延长线于F点,

根据题意,四边形BDEF为矩形.

AF=AB+BF=5+1=6,EF=BD=8.

即AC+CE的最小值是10.

∵EF∥BD,

解得:

(3)过点A作AF∥BD,交DE的延长线于F点,

根据题意,四边形ABDF为矩形.

EF=AB+DE=2+3=5,AF=DB=12.

即AC+CE的最小值是13.

考点: 轴对称-最短路线问题.

 

练习册系列答案
相关习题

科目:初中数学 来源:2012届浙江省丽水市青田县中考模拟数学试卷(带解析) 题型:解答题

为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时, AC+CE的值最小,于是可求得的最小值等于         ,此时       ;
(2)请你根据上述的方法和结论,试构图求出代数式的最小值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省丽水市青田县中考模拟数学试卷(解析版) 题型:解答题

为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时, AC+CE的值最小,于是可求得的最小值等于          ,此时        ;

 

(2)请你根据上述的方法和结论,试构图求出代数式的最小值.

 

查看答案和解析>>

科目:初中数学 来源:2012年江西省鹰潭市贵溪市中考数学模拟试卷(解析版) 题型:解答题

为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于______,此时x=______;
(2)请你根据上述的方法和结论,试构图求出代数式的最小值.

查看答案和解析>>

科目:初中数学 来源:2012年浙江省金华市中考数学模拟试卷(一)(解析版) 题型:解答题

为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于______,此时x=______;
(2)请你根据上述的方法和结论,试构图求出代数式的最小值.

查看答案和解析>>

同步练习册答案