为了探索代数式的最小值,
小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则, 则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于 ,此时 ;
(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?
(选填:函数思想,分类讨论思想、类比思想、数形结合思想)
(3)请你根据上述的方法和结论,试构图求出代数式的最小值.
(1)10,;(2)数形结合思想;(3)13.
【解析】
试题分析:(1)根据两点之间线段最短可知AC+CE的最小值就是线段AE的长度.过点E作EF∥BD,交AB的延长线于F点.在Rt△AEF中运用勾股定理计算求解.
(2)小张巧妙的运用了数形结合思想.
(3)由(1)的结果可作BD=12,过点A作AF∥BD,交DE的延长线于F点,使AB=2,ED=3,连接AE交BD于点C,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值就是代数式的最小值.
试题解析:(1)过点E作EF∥BD,交AB的延长线于F点,
根据题意,四边形BDEF为矩形.
AF=AB+BF=5+1=6,EF=BD=8.
∴.
即AC+CE的最小值是10.
∵EF∥BD,
∴,
∴,
解得:.
(3)过点A作AF∥BD,交DE的延长线于F点,
根据题意,四边形ABDF为矩形.
EF=AB+DE=2+3=5,AF=DB=12.
∴
即AC+CE的最小值是13.
考点: 轴对称-最短路线问题.
科目:初中数学 来源:2012届浙江省丽水市青田县中考模拟数学试卷(带解析) 题型:解答题
为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则, 则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时, AC+CE的值最小,于是可求得的最小值等于 ,此时 ;
(2)请你根据上述的方法和结论,试构图求出代数式的最小值.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年浙江省丽水市青田县中考模拟数学试卷(解析版) 题型:解答题
为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则, 则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时, AC+CE的值最小,于是可求得的最小值等于 ,此时 ;
(2)请你根据上述的方法和结论,试构图求出代数式的最小值.
查看答案和解析>>
科目:初中数学 来源:2012年江西省鹰潭市贵溪市中考数学模拟试卷(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2012年浙江省金华市中考数学模拟试卷(一)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com