精英家教网 > 初中数学 > 题目详情
已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断
PM
BE
+
PN
AD
是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断
PA
PB
=
EF
EG
是否成立?若成立,请给出证明;若不成立,请说明理由.
(1)设抛物线的解析式为y=a(x-1)2-3(1分)
将A(-1,0)代入:0=a(-1-1)2-3,
解得a=
3
4
(2分)
所以,抛物线的解析式为y=
3
4
(x-1)2-3,即y=
3
4
x2-
3
2
x-
9
4
(3分)

(2)是定值,
PM
BE
+
PN
AD
=1(4分)
∵AB为直径,
∴∠AEB=90°,
∵PM⊥AE,
∴PMBE,
∴△APM△ABE,
所以
PM
BE
=
AP
AB

同理:
PN
AD
=
PB
AB
②(5分)
①+②:
PM
BE
+
PN
AD
=
AP
AB
+
PB
AB
=1
(6分)

(3)∵直线EC为抛物线对称轴,
∴EC垂直平分AB,
∴EA=EB,
∵∠AEB=90°,
∴△AEB为等腰直角三角形,
∴∠EAB=∠EBA=45°(7分)
如图,过点P作PH⊥BE于H,
由已知及作法可知,四边形PHEM是矩形.
∴PH=ME且PHME.
在△APM和△PBH中,
∵∠AMP=∠PHB=90°,∠EAB=∠BPH=45°,
∴PH=BH,且△APM△PBH,
PA
PB
=
PM
BH

PA
PB
=
PM
PH
=
PM
ME
①(8分)
在△MEP和△EGF中,
∵PE⊥FG,
∴∠FGE+∠SEG=90°,
∵∠MEP+∠SEG=90°,
∴∠FGE=∠MEP,
∵∠PME=∠FEG=90°,
∴△MEP△EGF,
PM
ME
=
EF
EG

由①、②知:
PA
PB
=
EF
EG
(9分)(本题若按分类证明,只要合理,可给满分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小张同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
问:小张如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-
1
4
x2+
3
2
x
的图象如图所示.

(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移k个单位,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
(4)在(2)的条件下,平行于x轴的直线x=t(0<t<k)分别交AC、BC于E、F两点,试问在x轴上是否存在点P,使得△PEF是等腰直角三角形?若存在,请直接写P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋转后与x轴的正半轴重合,点B的对应点为点A.
(1)直接写出点A的坐标,并求出经过A,O,B三点的抛物线的解析式;
(2)在抛物线的对称轴上是否存在点C,使BC+OC的值最小?若存在,求出点C的坐标,若不存在,请说明理由;
(3)如果点P是抛物线上的一个动点,且在x轴的上方,当点P运动到什么位置时,△PAB的面积最大?求出此时点P的坐标和△PAB的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,平面直角坐标系中,四边形OABC是直角梯形,ABOC,OA=5,AB=10,OC=12,抛物线y=ax2+bx经过点B、C.
(1)求抛物线的函数表达式;
(2)一动点P从点A出发,沿AC以每秒2个单位长度的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长度的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,△PQC是直角三角形?
(3)点M在抛物线上,点N在抛物线对称轴上,是否存在这样的点M与点N,使以M、N、A、C为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形OBCD中,OB=8,BC=1,CD=10.
(1)求C,D两点的坐标;
(2)若线段OB上存在点P,使PD⊥PC,求过D,P,C三点的抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示的抛物线是二次函数y=ax2-x+a2-1的图象,那么a的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A(-2,0)和点B,与y轴相交于点C,顶点D(1,-
9
2

(1)求抛物线对应的函数关系式;
(2)求四边形ACDB的面积;
(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.
(1)求抛物线的表达式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?

查看答案和解析>>

同步练习册答案