【题目】在平面直角坐标系中,将A(1,0)、B(0,2)、C(2,3)、D(3,1)用线段依次连接起来形成一个图案(图案①).将图案①绕点O逆时针旋转90°得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③.
(1)在坐标系中分别画出图案②和图案③;
(2)若点D在图案②中对应的点记为点E,在图案③中对应的点记为点F,则S△DEF= ;
(3)若图案①上任一点P(A、B除外)的坐标为(a,b),图案②中与之对应的点记为点Q,图案③中与之对应的点记为点R,则S△PQR= .(用含有a、b的代数式表示)
【答案】(1)作图参见解析;(2)15;(3)(a2+b2).
【解析】
试题分析:(1)将图案①中的各顶点绕点O逆时针旋转90°得到知顶点的对应点,顺次连接对应点得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③;即连接OA,OB,OC,OD,并延长到A′,B′,C′,D′,使OA′,OB′,OC′,OD′是OA,OB,OC,OD的2倍,顺次连接各点即可;(2)根据网格分析S△DEF是由哪几个图形组成,利用面积公式计算.从图中可看出三角形是矩形的面积﹣三个三角形的面积.所以S△DEF=9×5﹣4×2÷2﹣5×5÷2﹣9×3÷2=15;(3)以特殊点点C看作点P,P(a,b),则Q点坐标(-b,a),R点坐标为(-2a,-2b),首先从图中找出这个三角形的三点,然后再连线组成三角形,观察网格得到三角形的面积公式=矩形﹣3个三角形的面积,列出式子计算.
试题解析:(1)将图案①中的各顶点绕点O逆时针旋转90°得到各个顶点的对应点,顺次连接对应点得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③;即连接OA,OB,OC,OD,并延长到A′,B′,C′,D′,使OA′,OB′,OC′,OD′是OA,OB,OC,OD的2倍,顺次连接各点,如图②和图③;
(2)从图中可看出三角形DEF的面积是矩形的面积﹣三个三角形的面积.所以S△DEF=9×5﹣4×2÷2﹣5×5÷2﹣9×3÷2=15;(3)∵点P(在第一象限内)的坐标为(a,b),∴点Q的坐标为(-b,a),点R的坐标为(-2a,-2b),不妨设a>b,S△PQR=(2a+a)(a+2b)-(2a-b)(2b+a)-(a+b)(a-b)-(2a+a)(2b+b)=3a2+6ab-(2a2-2b2+3ab+a2-b2+9ab)=3a2+6ab-a2+b2-6ab=(a2+b2).
科目:初中数学 来源: 题型:
【题目】若ab<0,且a﹣b>0,则下列选项中,正确的是( )
A. a<0,b<0 B. a<0,b>0 C. a>0,b<0 D. a>0,b>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于y=2(x﹣3)2+2的图象,下列叙述正确的是( )
A. 顶点坐标为(﹣3,2)
B. 开口向下
C. 当x≥3时,y随x的增大而增大
D. 对称轴是直线y=﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.
(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句是真命题的是( )
A.过一点有且只有一条直线与已知直线平行
B.在直线l上截取一条线段AB,使AB=3cm
C.在同一坐标系内,直线y=2x+3与直线y=x+3平行
D.三角形的一个外角大于任意一个内角
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com