精英家教网 > 初中数学 > 题目详情
7.如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则$\frac{EG}{AB}$=$\frac{\sqrt{7}}{2}$.

分析 连接AC、EF,根据菱形的对角线互相垂直平分可得AC⊥BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=BD,然后判断出△ABD是等边三角形,再根据等边三角形的三个角都是60°求出∠ADB=60°,设EF与BD相交于点H,AB=4x,然后根据三角形的中位线平行于第三边并且等于第三边的一半求出EH,再求出DH,从而得到GH,利用勾股定理列式求出EG,最后求出比值即可.

解答 解:如图,连接AC、EF,
在菱形ABCD中,AC⊥BD,
∵BE⊥AD,AE=DE,
∴AB=BD,
又∵菱形的边AB=AD,
∴△ABD是等边三角形,
∴∠ADB=60°,
设EF与BD相交于点H,AB=4x,
∵AE=DE,
∴由菱形的对称性,CF=DF,
∴EF是△ACD的中位线,
∴DH=$\frac{1}{2}$DO=$\frac{1}{4}$BD=x,
在Rt△EDH中,EH=$\sqrt{3}$DH=$\sqrt{3}$x,
∵DG=BD,
∴GH=BD+DH=4x+x=5x,
在Rt△EGH中,由勾股定理得,EG=$\sqrt{E{H}^{2}+G{H}^{2}}$=$\sqrt{(\sqrt{3}x)^{2}+(5x)^{2}}$=2$\sqrt{7}$x,
所以,$\frac{EG}{AB}$=$\frac{2\sqrt{7}x}{4x}$=$\frac{\sqrt{7}}{2}$.
故答案为:$\frac{\sqrt{7}}{2}$.

点评 本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,难点在于作辅助线构造出直角三角形以及三角形的中位线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.不等式组$\left\{\begin{array}{l}-1+2x<3\\ x+1≥0\end{array}\right.$的解集表示在数轴上正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.
(1)当AN平分∠MAB时,求DM的长;
(2)连接BN,当DM=1时,求△ABN的面积;
(3)当射线BN交线段CD于点F时,求DF的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=$\sqrt{2}$,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列四个数中,与-2的和为0的数是(  )
A.-2B.2C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a-b之值为何?(  )
A.5B.3C.-3D.-5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.2016年6月19日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.

请根据图1、图2解答下列问题:
(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;
(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在?ABCD中,已知AD>AB.
(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各数中,比-2小的数是(  )
A.-3B.-1C.0D.2

查看答案和解析>>

同步练习册答案