精英家教网 > 初中数学 > 题目详情
对面积为1的△ABC进行以下操作:分别延长AB、BC、CA至点A、B、C,使得AB=2AB,BC=2BC,CA=2CA,顺次连接A、B、C,得到△ABC (如图所示),记其面积为S.现再分别延长AB、BC、CA至点A、B、C,使得AB=2AB,BC=2BC,CA=2CA,顺次连接A、B、C,得到△ABC,记其面积为S,则S=_____________.
361

试题分析:连接A1C,找出延长各边后得到的三角形是原三角形的19倍的规律,利用规律求解即可.
解:连接A1C

SAA1C=3SABC=3,
SAA1C1=2SAA1C=6,
所以SA1B1C1=6×3+1=19;
则可得SA2B2C2=19×19=361,即S=361.
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把得到的规律应用于解题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,D是底边BC的中点,作DE⊥AB于E,DF⊥AC于F
求证:DE=DF.
证明:∵AB=AC,∴∠B=∠C①.
在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF②.∴DE=DF③.
上面的证明过程是否正确?若正确,请写出①、②和③的推理根据.
(2)请你写出另一种证明此题的方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种产品的商标如图所示,O是线段AC、BD的交点,并且AC=BD,AB=CD.小明认为图中的两个三角形全等,他的思考过程是:

在△ABO和△DCO中

你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列长度的三条线段,能组成三角形的是
A.1cm,2cm,3cmB.2cm,3cm,6cm
C.4cm,6cm,8cmD.5cm,6cm,12cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在中,,若按图中虚线剪去,则等于(     )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,a,b两片木条放在地面上,∠1,∠2分别为两片木条与地面的夹角,∠3是两片木条间的夹角,若∠2=120°,∠3=100°,则∠1的度数为(   )
A.38°B.40°C.42°D.45°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,AB=,BC=1,∠ABC=450,以AB为一边作等腰直角三角形ABD,使∠ABD=900,连接CD,则线段CD的长为     

查看答案和解析>>

同步练习册答案