【题目】如图,在矩形ABCD中,已知 AD>AB,在边AD上取点E,连结CE,过点E作EF⊥CE,与边AB的延长线交于点F.
(1)证明:△AEF∽△DCE.
(2)若AB=2,AE =3,AD=7,求线段AF的长.
【答案】(1)见解析;(2)AF=6.
【解析】
(1)由四边形ABCD为矩形,于是得到∠A=∠D=90°,根据垂直的定义得到∠AEF+∠DEC=90°,于是得到∠F=∠DEC,即可得到结论;
(2)由四边形ABCD为矩形,得到DC=AB=2,求出ED=AD-AE=4,根据相似三角形的性质得到,代入数据即可得到结论.
(1)∵四边形ABCD为矩形,
∴∠A =∠D =90°.
∵CE⊥EF,
∴∠AEF+∠DEC =90°.
又∵∠F+∠AEF=90°,
∴∠F=∠DEC.
∴△AEF∽△DCE.
(2)∵四边形ABCD为矩形,
∴DC=AB=2.
∵AE =3,AD=7,
∴ED= AD-AE=4.
∵△AEF∽△DCE,
∴.
∴.
∴AF=6.
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于M,以下结论:①△BCD是等腰三角形;②射线BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+BC;④△ADM≌BCD.正确的有( )
A.①②③B.①②C.①③D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数与一次函数的图象交于A、B两点,且点A的横坐标是2,点B的纵坐标是求:
一次函数的解析式;
的面积;
直接写出使反比例函数的值大于一次函数的值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人相约登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)图中的t1= 分;
(2)若乙提速后,乙登山的速度是甲登山的速度的3倍,
①则甲登山的速度是 米/分,图中的t2= 分;
②请求出乙登山过程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,
交BC的延长线于点E,使得∠DAC=∠B.
(1)求证:DA是⊙O切线;
(2)求证:△CED∽△ACD;
(3)若OA=1,sinD=,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com