精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线yx2+bxc经过直线yx﹣3与坐标轴的两个交点AB,此抛物线与x轴的另一个交点为C,抛物线的顶点为D

(1)求此抛物线的解析式;

(2)点P为抛物线上的一个动点,求使SAPCSACD=5:4的点P的坐标.

【答案】(1)yx2﹣2x﹣3.(2)满足条件的点的坐标为(4,5)或(﹣2,5).

【解析】

(1)先根据直线y=x-3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值.

(2)根据(1)中抛物线的解析式可求出C,D两点的坐标,由于APCACD同底,因此面积比等于高的比,即P点纵坐标的绝对值:D点纵坐标的绝对值=5:4.据此可求出P点的纵坐标,然后将其代入抛物线的解析式中,即可求出P点的坐标.

(1)直线y=x-3与坐标轴的交点A(3,0),B(0,-3).

解得

∴此抛物线的解析式y=x2-2x-3.

(2)抛物线的顶点D(1,-4),与x轴的另一个交点C(-1,0).

P(a,a2-2a-3),则(×4×|a2-2a-3|):(×4×4)=5:4.

化简得|a2-2a-3|=5.

a2-2a-3=5,得a=4a=-2.

P(4,5)或P(-2,5),

a2-2a-3<0时,即a2-2a+2=0,此方程无解.

综上所述,满足条件的点的坐标为(4,5)或(-2,5).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线l1过点A(04),点D(40),直线l2x轴交于点C,两直线相交于点B

(1)求直线的解析式和点B的坐标;

(2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小杰在学完了《锐角三角比》知识后回家整理笔记,写下了下列四句活:(1)锐角A的正弦的值的范围是0<sinA<1;(2)根据正切和余切的意义,可以得到tanA=;(3)在Rt△ABC中,如∠C=90°,则cosB=sinA;(4)在Rt△ABC中,如∠C=90°,则cotB=tanA;请你判断上述语句正确的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,已知ABlDEl,垂足分别为BE,且Cl上一点,∠ACD=90°.求证:△ABCCED

2)如图2,在四边形ABCD中,ABC=90°AB=6BC=8CD=20DA=.求BD的长为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,二次函数≠0的图像经过点(3,5)、(2,8)、(0,8).

①求这个二次函数的解析式;

②已知抛物线≠0≠0,且满足≠0,1,则我们称抛物线互为“友好抛物线”,请写出当时第①小题中的抛物线的友好抛物线,并求出这“友好抛物线”的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在菱形ABCD中,AB=6tan∠ABC=2,点E是射线DA上的一个动点,连接CE,将线段CE绕点C顺时针旋转一个角α(α=∠BCD,得到对应线段CF

1)求证:BCEDCF

2)求线段DF的长度的最小值;

3)如图2,连接BDEFBDECEF于点PQ.当△EPQ是直角三角形时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm 的是(

A. 2秒钟 B. 3秒钟 C. 4秒钟 D. 5秒钟

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB=DC,点MN分别是ADBC的中点,点EF分别是BMCM的中点. 1)求证:四边形MENF是菱形; 2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰 Rt△ABC 中,AC=BC= 2,点 P 在以斜边 AB 为直径的半圆上,M 为 PC的中点.当点 P 沿半圆从点 A 运动至点 B 时,点 M 运动的路径长是( )

A. 2 B. 2 C. π D. π

查看答案和解析>>

同步练习册答案