【题目】如图,在△ABC中,点D,E分别是AB,AC的中点,连接DE并延长到点F,使EF=ED,连接CF.
(1)四边形DBCF是平行四边形吗?说明理由;
(2)DE与BC有什么样的位置关系和数量关系?说明理由.
【答案】(1)四边形DBCF是平行四边形 (2)DE∥BC,DE=BC
【解析】(1)利用△AED≌△CEF得到AD=CF,∠A=∠ECF可知: AD∥CF,即CF∥BD.根据中位线定理可知BD=AD即BD=CF.所以四边形DBCF是平行四边形;
(2)根据(1)的结果可知EF=ED,∴DE=DF.
(1)四边形DBCF是平行四边形.
理由:∵E是AC的中点,
∴AE=CE.
又∵EF=ED,∠CEF=∠AED,
∴△AED≌△CEF(SAS).
∴AD=CF,∠A=∠ECF.
∴AD∥CF,即CF∥BD.
又∵D为AB的中点,∴BD=AD.∴BD=CF.
∴四边形DBCF是平行四边形.
(2)DE∥BC,DE=BC.
理由:∵EF=ED,∴DE=DF.
又∵四边形DBCF是平行四边形,
∴DF=BC,DF∥BC.
∴DE∥BC,DE=BC.
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+b的图象经过点A(-3,-2)及点B(0,4).
(1)求此一次函数的解析式;
(2)当y=-5时求x的值;
(3)求此函数图象与两坐标轴所围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于( )
A. 9 B. 35 C. 45 D. 无法计算
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A1(1, )在直线l1:y= x上,过点A1作A1B1⊥l1交直线l2:y= x于点B1 , A1B1为边在△OA1B1外侧作等边三角形A1B1C1 , 再过点C1作A2B2⊥l1 , 分别交直线l1和l2于A2 , B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2 , …按此规律进行下去,则第n个等边三角形AnBnCn的面积为 . (用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3
(1)求证:BN=DN;
(2)求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在以AB为直径的⊙O上,点C是 的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.
(1)求证:CD是⊙O的切线;
(2)若cos∠CAD= ,BF=15,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知长方形ABCD中AB = 8cm,BC = 10cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,则CF的长为( )
A. 2cm B. 3cm C. 4cm D. 5cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,点E是平面内异于点A的任意一点,以线
段AE为边作正方形AEFG,连接EB,GD.
(1) 如图1,判断EB与GD的关系并说明理由;
(2) 如图2,若点E在线段DG上,AB=5,AG=3,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com