精英家教网 > 初中数学 > 题目详情

【题目】如图,,点轴上,且

1)求点的坐标;

2)求的面积;

3)在轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标.若不存在,请说明理由.

【答案】1)(2,0)或(-4,0;2=6;3)(0)或(0-).

【解析】

(1)分点B在点A的左边和右边两种情况解答;

(2)利用三角形的面积公式列式计算即可得解;

3)利用三角形的面积公式列式求出点Px轴的距离,然后分两种情况写出点P的坐标即可.

:1)点B在点A的右边时,-1+3=2, B在点A的左边时,-1-3=-4,

所以,B的坐标为(2,0)或(-4,0;

2)△ABC的面积=×3×4=6;

3)设点Px轴的距离为h,

×3h=10, 解得h=,

Py轴正半轴时,P0, Py轴负半轴时,P0-),

综上所述,P的坐标为(0)或(0-).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB⊙O的切线.

2)已知AOO于点E,延长AOO于点DtanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

【答案】(1)证明见解析(2) (3)

【解析】试题分析:(1)过OOF⊥ABF,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" BF=z,列二元一次方程组即可解决问题.

试题解析:(1)证明:作OF⊥ABF

∵AO∠BAC的角平分线,∠ACB=90

∴OC=OF

∴AB⊙O的切线

2)连接CE

∵AO∠BAC的角平分线,

∴∠CAE=∠CAD

∵∠ACE所对的弧与∠CDE所对的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,设AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易证Rt△B0F∽Rt△BAC

BO=y BF=z

4z=93y4y=123z

解得z=y=

∴AB=4=

考点:圆的综合题.

型】解答
束】
22

【题目】已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).

(1)求此二次函数的表达式;

(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图直线的解析式为,直线的解析式为;这两个图象交于轴上一点,直线轴的交点动点从点出发沿轴以每秒1个单位长的速度向左移动,设移动时间为秒,当__________时,为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1x2

(1)求k的取值范围;

(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DADB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°60°(图中的点A、B、C、D、M、N均在同一平面内,CMAN).

(1)求灯杆CD的高度;

(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形的一条边长为8,则它的两条对角线可以是(

A.612B.610C.68D.66

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:的角平分线,点分别在上,且

1)如图1,求证:四边形是平行四边形;

2)如图2,若为等边三角形,在不添加辅助线的情况下,请你直接写出所有的全等三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x=﹣mx=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2.当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,AB=AC=4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点PPDBCRtABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t(t>0).

(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出St之间的函数关系式以及相应的自变量t的取值范围;

(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;

(3)t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积yPM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.

查看答案和解析>>

同步练习册答案