精英家教网 > 初中数学 > 题目详情
20.下列等式成立的是(  )
A.6÷(-$\frac{1}{4}$)×4=6×(-4)×4B.6÷(-$\frac{1}{4}$)×4=6×(-$\frac{1}{4}$)×4C.6÷(-$\frac{1}{4}$)×4=6÷(-$\frac{1}{4}$×4)D.6÷(-$\frac{1}{4}$)×4=6×(-4)÷4

分析 根据有理数的除法法则,可得答案.

解答 解:6÷(-$\frac{1}{4}$)×4=6×(-4)×4,
故选:A.

点评 本题考查了有理数的除法,解题关键是把除法转化成乘法.

练习册系列答案
相关习题

科目:初中数学 来源:2017届江苏省无锡市九年级下学期第一次模拟考试数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(?4,0)处.

(1)求直线AB的解析式;

(2)点P从点A出发以每秒个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);

(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年北京市西城区七年级上学期期末考试数学试卷(解析版) 题型:填空题

下面的框图表示解方程3x-7(x-1)=3-2(x+3)的流程,其中A代表的步骤是_________,步骤A对方程进行变形的依据是________________。

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,边长都为1的正方形AEFG与正方形ABCD,正方形AEFG绕顶点A旋转一周,在此旋转过程中,线段DF的长可取的整数值为1和2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m.此后两人分别以am/s和bm/s匀速跑.又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.求这次越野赛跑的全程.
(Ⅰ)根据题意,填写下表:
时间(秒)
路程(米)
从比赛开始到
匀速跑前
从比赛开始到
匀速跑完100秒
从比赛开始到
匀速跑完200秒
小明16001600+100a1600+200a
小刚14501450+100b1450+200b
(Ⅱ)求出问题的解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是(  )
A.2$\sqrt{2}$+2B.2$\sqrt{5}$C.2$\sqrt{6}$D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,圆O的半径为2$\sqrt{2}$,AB、AC是圆O的两条弦,AB=2$\sqrt{3}$,AC=4,如果以O为圆心,作一个与AC相切的圆,那么这个圆的半径是多少?它与AB又怎样的位置关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,⊙O的半径为10,A是⊙O上一点.以OA为对角线作矩形OBAC,且OC=6.延长BC,与⊙O分别交于D,E两点,则△OCE和△OBD的周长差等于(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.1D.$\frac{6}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.观察下列计算,去掉分母中的根号.
$\frac{1}{\sqrt{2}+\sqrt{1}}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1,$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$,
$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$=2-$\sqrt{3}$
(1)第n个式子:$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n≥2的自然数)应写成什么形式?
(2)从上述结果中找出规律,并利用这一规律计算:
($\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$)+…+$\frac{1}{\sqrt{2009}+\sqrt{2008}}$)•($\sqrt{2009}$+1)
(3)通过(1)(2)问题的解答,你能否找到计算式子:
$\frac{1}{2\sqrt{1}+1\sqrt{2}}$+$\frac{1}{3\sqrt{2}+2\sqrt{3}}$+$\frac{1}{4\sqrt{3}+3\sqrt{4}}$+…+$\frac{1}{2009\sqrt{2008}+2008\sqrt{2009}}$.

查看答案和解析>>

同步练习册答案