原方程 | 原方程的根 | ”和谐方程“ | ”和谐方程“的根 |
x2+6x+9=0 | x1=-3,x2=-3 | 9x2+6x+1=0 | x1=-$\frac{1}{3}$,x2=-$\frac{1}{3}$ |
x2-5x+6=0 | x1=2,x2=3 | 6x2-5x+1=0 | x1=$\frac{1}{2}$,x2=$\frac{1}{3}$ |
-$\frac{1}{6}$x2-$\frac{1}{6}$x+1=0 | x1=2,x2=-3 | x2-$\frac{1}{6}$x-$\frac{1}{6}$=0 | x1=$\frac{1}{2}$,x2=-$\frac{1}{3}$ |
2x2-3x-2=0 | x1=2,x2=-$\frac{1}{2}$ | -2x2-3x+2=0 | x1=$\frac{1}{2}$,x2=-2 |
分析 (1)根据“和谐方程”的定义写出对应的和谐方程,因式分解法求出每个方程的两个实数根;
(2)根据表中原方程与“和谐方程”的根得出规律,再用求根公式去验证即可;
(3)先根据“和谐方程”的根的特点得出-x2+bx+2016=0,即x2-bx-2016=0的两根为x1=-1,x2=2016,将待求方程变形为(x-1)2-b(x-1)-2016=0,把x-1看做整体即可求解.
解答 解:(1)完成表格如下:
原方程 | 原方程的根 | “和谐方程” | “和谐方程”的根 |
x2+6x+9=0 | x1=-3,x2=-3 | 9x2+6x+1=0 | x1=-$\frac{1}{3}$,x2=-$\frac{1}{3}$ |
x2-5x+6=0 | x1=2,x2=3 | 6x2-5x+1=0 | x1=$\frac{1}{2}$,x2=$\frac{1}{3}$ |
-$\frac{1}{6}$x2-$\frac{1}{6}$x+1=0 | x1=2,x2=-3 | x2-$\frac{1}{6}$x-$\frac{1}{6}$=0 | x1=$\frac{1}{2}$,x2=-$\frac{1}{3}$ |
2x2-3x-2=0 | x1=2,x2=-$\frac{1}{2}$ | -2x2-3x+2=0 | x1=$\frac{1}{2}$,x2=-2 |
点评 本题主要考查新定义下一元二次方程根与系数间的关系及求根公式的运用,掌握并灵活运用新定义是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com