精英家教网 > 初中数学 > 题目详情
5.如果等腰三角形两边长是6cm和3cm,那么它的周长是(  )
A.9cmB.12cmC.15cmD.15cm或12cm

分析 题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.

解答 解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.
当腰为6cm时,6-3<6<6+3,能构成三角形;
此时等腰三角形的周长为6+6+3=15cm.
故选C.

点评 本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图1所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF,现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为α.
(1)当边CD′恰好经过EF的中点H时,求旋转角α的大小;
(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△BCD′能否全等?若能,直接写出旋转角α的大小;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,直线AB:y=$\frac{4}{3}$x+8与x轴、y轴分别交于A、D两点,点B的横坐标为3.点C(9,0),连接BC,点E是y轴正半轴上一点,连接AE,将△ADE沿AE折叠,点D恰好落在x轴上的点D1处.
(1)求点E的坐标;
(2)连接EC,点F(m,0),G(m+2,0)为x轴上两点,其中3<m<7.过点F作FF1⊥x轴交BC于点F1,交EC于点M过点G作GG1⊥x轴交BC于点G1,交EC于点N,当F1M+G1N=10时,求m的值;
(3)如图2,在等边△PQR中,PR⊥x轴且PR=4(点Q、R在x轴上方).△PQR从点C出发以每秒2个单位长度的速度沿x轴负方向运动,设运动的时间为t,当t为何值时,点Q到直线AC和直线AB的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如果单项式-xyb+1与$\frac{1}{3}$xa-2y3是同类项,那么(b-a)2016=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知关于x的方程kx=9-x有正整数解,则整数k的最大值为8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若k为整数,且关于x的方程(x+1)2=1-k没有实根,则满足条件的k的值为2(只需写一个)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知反比例函数y=$\frac{{k}^{2}}{x}$的图象与正比例函数y=(k-2)x的图象没有交点,那么k的取值范围是k<2且k≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,将边长为3的正六边形A1 A2 A3 A4 A5 A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为(4+2$\sqrt{3}$)π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知∠A=35°10′48″,则∠A的补角是144°49′12″.

查看答案和解析>>

同步练习册答案