精英家教网 > 初中数学 > 题目详情
如图,PA为⊙O直径,过弧AC的中点H作PC的垂线交PC的延长线于点B,若HB=6cm,BC=4cm,求⊙O直径.
连接AC,OH,交于点G,
∵AP为直径,
∴∠ACP=90°,
∵HB⊥PB,
∴∠PBH=90°,
∴∠ACP=∠PBH,
∴ACBH,
∵H为
AC
的中点,
∴OH⊥AC,G为AC的中点,
∴BH⊥OH,即BH为圆的切线,
∴四边形BCGH为矩形,
∴BC=GH=4cm,CG=BH=6cm,
∵OG为△ACP的中位线,
∴OG=
1
2
PC,
设圆的半径为xcm,则OH=xcm,PA=2xcm,
OG=OH-GH=(x-4)cm,PC=(2x-8)cm,AC=2CG=12cm,
在Rt△ACP中,根据勾股定理得:PA2=AC2+PC2
即(2x)2=122+(2x-8)2
解得:x=6.5.
则圆的直径为13cm.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知⊙O1经过A(-4,2),B(-3,3),C(-1,-1),O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.
(1)在右边的平面直角坐标系中画出⊙O1,直线l与⊙O1的交点坐标为______;
(2)若⊙O1上存在整点P(横坐标与纵坐标均为整数的点称为整点),使得△APD为等腰三角形,所有满足条件的点P坐标为______;
(3)将⊙O1沿x轴向右平移______个单位时,⊙O1与y相切;
(4)将⊙O1沿x轴向右平移______个单位时,⊙O1与l相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围;
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与⊙O的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E.
(1)求证:AE切⊙O于点D;
(2)若AC=2,且AC、AD的长时关于x的方程x2-kx+4
5
=0的两根,求线段EB的长;
(3)当点O位于线段AB何处时,△ODC恰好是等边三角形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,AB,AC与⊙O相切于点B,C,点P是圆上异于B、C的一动点,则∠BPC的度数是(  )
A.65°B.115°C.65°或115°D.130°或50°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两同心圆的半径分别是10和6,大圆的弦AB长16.AB与小圆的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,过点B的切线与CA的延长线相交于点E,且∠BEC=90°,点D在OA的延长线上,AO⊥BC,∠ODC=30°.
(1)求证:DC为⊙O的切线.
(2)若CA=6,求DC的长.

查看答案和解析>>

同步练习册答案