ÒÑÖªÔ²PµÄÔ²ÐÄPÔÚ·´±ÈÀýº¯Êýy=
kx
£¨k£¾0£©µÚÒ»ÏóÏÞͼÏóÉÏ£¬²¢ÓëxÖáÏཻÓÚA¡¢BÁ½µã¾«Ó¢¼Ò½ÌÍø£¬ÇÒʼÖÕÓëyÖáÏàÇÐÓÚ¶¨µãC£¨0£¬1£©£®
£¨1£©ÇóʵÊýkµÄÈ¡Öµ·¶Î§£»
£¨2£©Çó¾­¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýͼÏóµÄ½âÎöʽ£»
£¨3£©Èô¶þ´Îº¯ÊýͼÏóµÄ¶¥µãΪD£¬ÎÊÊÇ·ñ´æÔÚʵÊýk£¬Ê¹ËıßÐÎADBPΪÁâÐΣ¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨4£©´ËÅ×ÎïÏߵĶ¥µãDÊÇ·ñ¿ÉÄÜÔÚÔ²PÄÚ£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨1£©Á¬½ÓPC¡¢PA¡¢PB£¬¹ýPµã×÷PH¡ÍxÖᣬ´¹×ãΪH£¬PµÄ×ø±êÊÇ£¨k£¬1£©£¬µÃµ½PA=PC=k£¬ÓÉPA£¾PH¼´¿ÉµÃµ½´ð°¸£»
£¨2£©¸ù¾Ý¹´¹É¶¨ÀíµÃµ½AH=
k2-1
£¬µÃµ½A£¨k-
k2-1
£¬0£©£¬ÓÉ¡ÑP½»xÖáÓÚA¡¢BÁ½µã£¬ÇÒPH¡ÍAB£¬ÓÉ´¹¾¶¶¨Àí¿ÉÖª£¬PH´¹Ö±Æ½·ÖAB£¬µÃµ½B£¨k+
k2-1
£¬0£©£¬¿ÉÉè¸ÃÅ×ÎïÏß½âÎöʽΪy=a£¨x-k£©2+h£¬´úÈëµÃµ½·½³Ì×é
ak2+h=1
a(k+
k2-1
-k)
2
+h=0
Çó³ö¼´¿É£»
£¨3£©Å×ÎïÏ߶¥µãD×ø±êΪ£¨k£¬1-k2£©£¬¸ù¾ÝËıßÐÎADBPΪÁâÐΣ®Ôò±ØÓÐPH=DH£¬µÃµ½k2-1=1£¬Çó³ö¼´¿É£»
£¨4£©¸ù¾ÝPD=1-£¨1-k2£©=k2£¾k=PA£¬Åжϼ´¿É£®
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£º£¨1£©Á¬½ÓPC¡¢PA¡¢PB£¬¹ýPµã×÷PH¡ÍxÖᣬ´¹×ãΪH£¬
¡ßPµãÔÚ·´±ÈÀýº¯Êýy=
k
x
µÄͼÏóÉÏ£¬
¡àPµÄ×ø±êÊÇ£¨k£¬1£©£¬
¡àPA=PC=k£¬ÔÚRt¡÷PAHÖУ¬ÓÉPA£¾PH£¬
½âµÃ£ºk£¾1£¬
´ð£ºÊµÊýkµÄÈ¡Öµ·¶Î§ÊÇk£¾1£®

£¨2£©½â£ºÔÚRt¡÷APHÖУ¬AH=
PA2-PH2
=
k2-1
£¬
¡àOA=OH-AH=k-
k2-1
£¬
¡àA£¨k-
k2-1
£¬0£©£¬
¡ßÓÉ¡ÑP½»xÖáÓÚA¡¢BÁ½µã£¬ÇÒPH¡ÍAB£¬ÓÉ´¹¾¶¶¨Àí¿ÉÖª£¬PH´¹Ö±Æ½·ÖAB£¬
¡àOB=OA+2AH=k-
k2-1
+2
k2-1
=k+
k2-1
£¬
¡àB£¨k+
k2-1
£¬0£©£¬
¹Ê¹ýA¡¢BÁ½µãµÄÅ×ÎïÏߵĶԳÆÖáΪPHËùÔÚµÄÖ±Ïß½âÎöʽΪx=k£¬
¿ÉÉè¸ÃÅ×ÎïÏß½âÎöʽΪy=a£¨x-k£©2+h£¬
ÓÖÅ×ÎïÏß¹ýC£¨0£¬1£©£¬B£¨k+
k2-1
£¬0£©£¬
µÃ£º
ak2+h=1
a(k+
k2-1
-k)
2
+h=0
£¬
½âµÃa=1£¬h=1-k2£¬
¡àÅ×ÎïÏß½âÎöʽΪy=£¨x-k£©2+1-k2£¬
´ð£º¾­¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýͼÏóµÄ½âÎöʽÊÇy=£¨x-k£©2+1-k2£®¾«Ó¢¼Ò½ÌÍø

£¨3£©½â£ºÓÉ£¨2£©ÖªÅ×ÎïÏ߶¥µãD×ø±êΪ£¨k£¬1-k2£©£¬
¡àDH=k2-1£¬
ÈôËıßÐÎADBPΪÁâÐΣ®Ôò±ØÓÐPH=DH£¬
¡ßPH=1£¬
¡àk2-1=1£¬
ÓÖ¡ßk£¾1£¬
¡àk=
2

¡àµ±kÈ¡
2
ʱ£¬PDÓëAB»¥Ïഹֱƽ·Ö£¬ÔòËıßÐÎADBPΪÁâÐΣ¬
´ð£º´æÔÚʵÊýk£¬Ê¹ËıßÐÎADBPΪÁâÐΣ¬kµÄÖµÊÇ
2
£®

£¨4£©´ð£ºDµã²»¿ÉÄÜÔÚÔ²PÄÚ£¬
Ö¤Ã÷£º¡ßPD=1-£¨1-k2£©=k2£¾k=PA£¨Ô²PµÄ°ë¾¶£©£¬
ËùÒÔDµã²»¿ÉÄÜÔÚÔ²PÄÚ£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶ÔÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýµÄÈýÖÖÐÎʽ£¬¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬ÁâÐεÄÐÔÖÊ£¬¹´¹É¶¨Àí£¬½â¶þÔªÒ»´Î·½³Ì×éµÈ֪ʶµãµÄÀí½âºÍÕÆÎÕ£¬×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐÐÍÆÀíÊǽâ´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²PµÄÔ²ÐÄÔÚ·´±ÈÀýº¯Êýy=
kx
£¨k£¾1£©Í¼ÏóÉÏ£¬²¢ÓëxÖáÏཻÓÚA¡¢BÁ½µã£®ÇÒʼÖÕÓëyÖáÏàÇÐÓÚ¶¨µãC£¨0£¬1£©£®
£¨1£©Çó¾­¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýͼÏóµÄ½âÎöʽ£»
£¨2£©Èô¶þ´Îº¯ÊýͼÏóµÄ¶¥µãΪD£¬Îʵ±kΪºÎֵʱ£¬ËıßÐÎADBPΪÁâÐΣ®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£ºµÚ26Õ¡¶¶þ´Îº¯Êý¡·Öп¼Ì⼯£¨38£©£º26.3 ʵ¼ÊÎÊÌâÓë¶þ´Îº¯Êý£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÔ²PµÄÔ²ÐÄÔÚ·´±ÈÀýº¯Êýy=£¨k£¾1£©Í¼ÏóÉÏ£¬²¢ÓëxÖáÏཻÓÚA¡¢BÁ½µã£®ÇÒʼÖÕÓëyÖáÏàÇÐÓÚ¶¨µãC£¨0£¬1£©£®
£¨1£©Çó¾­¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýͼÏóµÄ½âÎöʽ£»
£¨2£©Èô¶þ´Îº¯ÊýͼÏóµÄ¶¥µãΪD£¬Îʵ±kΪºÎֵʱ£¬ËıßÐÎADBPΪÁâÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012ÄêÕã½­Ê¡º¼ÖÝÊÐÎ÷ϪÖÐѧÖп¼ÊýѧģÄâÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÔ²PµÄÔ²ÐÄPÔÚ·´±ÈÀýº¯Êý£¨k£¾0£©µÚÒ»ÏóÏÞͼÏóÉÏ£¬²¢ÓëxÖáÏཻÓÚA¡¢BÁ½µã£¬ÇÒʼÖÕÓëyÖáÏàÇÐÓÚ¶¨µãC£¨0£¬1£©£®
£¨1£©ÇóʵÊýkµÄÈ¡Öµ·¶Î§£»
£¨2£©Çó¾­¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýͼÏóµÄ½âÎöʽ£»
£¨3£©Èô¶þ´Îº¯ÊýͼÏóµÄ¶¥µãΪD£¬ÎÊÊÇ·ñ´æÔÚʵÊýk£¬Ê¹ËıßÐÎADBPΪÁâÐΣ¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨4£©´ËÅ×ÎïÏߵĶ¥µãDÊÇ·ñ¿ÉÄÜÔÚÔ²PÄÚ£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011ÄêÕã½­Ê¡º¼ÖÝÊи»ÑôÊÐÖп¼ÊýѧģÄâÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÔ²PµÄÔ²ÐÄPÔÚ·´±ÈÀýº¯Êý£¨k£¾0£©µÚÒ»ÏóÏÞͼÏóÉÏ£¬²¢ÓëxÖáÏཻÓÚA¡¢BÁ½µã£¬ÇÒʼÖÕÓëyÖáÏàÇÐÓÚ¶¨µãC£¨0£¬1£©£®
£¨1£©ÇóʵÊýkµÄÈ¡Öµ·¶Î§£»
£¨2£©Çó¾­¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýͼÏóµÄ½âÎöʽ£»
£¨3£©Èô¶þ´Îº¯ÊýͼÏóµÄ¶¥µãΪD£¬ÎÊÊÇ·ñ´æÔÚʵÊýk£¬Ê¹ËıßÐÎADBPΪÁâÐΣ¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨4£©´ËÅ×ÎïÏߵĶ¥µãDÊÇ·ñ¿ÉÄÜÔÚÔ²PÄÚ£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸