精英家教网 > 初中数学 > 题目详情
(2008•贵港)已知:如图,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
(1)求证:AD=BD;
(2)求证:DF是⊙O的切线;
(3)若⊙O的半径为3,sin∠F=,求DE的长.

【答案】分析:(1)连接CD,由圆周角定理易得CD⊥AB,又有AC=BC,故AD=BD.
(2)连接OD,根据三角形中角的互余关系可得∠ODF=90°,故DF是⊙O的切线.
(3)根据三角函数的定义,可得sin∠F=,进而可得CF=5-3=2,再根据比例的关系,代入数据可得答案.
解答:(1)证明:如图,连接CD,(1分)
∵BC是直径,
∴∠BDC=90°,
即CD⊥AB.(2分)
∵AC=BC,
∴AD=BD.(3分)

(2)证明:连接OD,(4分)
∵∠A=∠B,∠AED=∠BDC=90°,
∴∠ADE=∠DCO.
∵OC=OD,
∴∠DCO=∠CDO.
∴∠CDO=∠ADE.
由(1)得∠ADE+∠CDE=90°,
∴∠CDO+∠CDE=90°.(5分)
即∠ODF=90°.
∴DF是⊙O的切线.(6分)

(3)解:在Rt△DOF中,
∵sin∠F=
∴OF=5.(7分)
∵OC=3,
∴CF=5-3=2.
由(2)得∠DEA=∠ODF=90°,
∴OD∥AC.
∴△CEF∽△ODF.(9分)
.(10分)

∴DE=.(11分)
点评:本题考查切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2008•贵港)已知一元二次方程x2-4x-5=0的两个实数根为x1、x2,且x1<x2.若x1、x2分别是抛物线y=-x2+bx+c与x轴的两个交点A、B的横坐标(如下图所示).
(1)求该抛物线的解析式;
(2)设(1)中的抛物线与y轴的交点为C,抛物线的顶点为D,请直接写出点C、D的坐标并求出四边形ABDC的面积;
(3)是否存在直线y=kx(k>0)与线段BD相交且把四边形ABDC的面积分为相等的两部分?若存在,求出k的值;若不存在,请说明理由.
[注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为()].

查看答案和解析>>

科目:初中数学 来源:2008年广西贵港市中考数学试卷(解析版) 题型:解答题

(2008•贵港)已知一元二次方程x2-4x-5=0的两个实数根为x1、x2,且x1<x2.若x1、x2分别是抛物线y=-x2+bx+c与x轴的两个交点A、B的横坐标(如下图所示).
(1)求该抛物线的解析式;
(2)设(1)中的抛物线与y轴的交点为C,抛物线的顶点为D,请直接写出点C、D的坐标并求出四边形ABDC的面积;
(3)是否存在直线y=kx(k>0)与线段BD相交且把四边形ABDC的面积分为相等的两部分?若存在,求出k的值;若不存在,请说明理由.
[注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为()].

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《锐角三角函数》(05)(解析版) 题型:解答题

(2008•贵港)已知:如图,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
(1)求证:AD=BD;
(2)求证:DF是⊙O的切线;
(3)若⊙O的半径为3,sin∠F=,求DE的长.

查看答案和解析>>

科目:初中数学 来源:2008年广西贵港市中考数学试卷(解析版) 题型:解答题

(2008•贵港)已知:如图,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
(1)求证:AD=BD;
(2)求证:DF是⊙O的切线;
(3)若⊙O的半径为3,sin∠F=,求DE的长.

查看答案和解析>>

同步练习册答案