【题目】已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.
(1)利用图①证明:EF=2BC.
(2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.
【答案】(1)详见解析;(2)成立,证明见解析.
【解析】
(1)根据等边三角形的性质,得∠ACB=60°,AC=BC.结合三角形外角的性质,得∠CAF=30°,则CF=AC,从而证明结论;
(2)根据(1)中的证明方法,得到CH=CF.根据(1)中的结论,知BE+CF=AC,从而证明结论.
(1)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
∵∠F=30°,∴∠CAF=60°-30°=30°,∴∠CAF=∠F,∴CF=AC,∴CF=AC=BC,∴EF=2BC.
(2)成立.证明如下:
∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
∵∠F=30°,∴∠CHF=60°-30°=30°,∴∠CHF=∠F,∴CH=CF.
∵EF=2BC,∴BE+CF=BC.
又∵AH+CH=AC,AC=BC,∴AH=BE.
科目:初中数学 来源: 题型:
【题目】如图1是一个长为2a,宽为2b的长方形(其中a,b均为正数,且a>b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图方式拼成一个大正方形.
(1)你认为图2中大正方形的边长为_________;小正方形(阴影部分)的边长为_________.(用含a,b的代数式表示)
(2)仔细观察图,请你写出下列三个代数式(a+b)2,(a-b)2,ab所表示的图形面积之间的相等关系.
(3)已知a+b=7,ab=6,求代数式(a-b)2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若多项式的次数为,项数为;当时,此多项式的值为.
(1)分别写出所表示的数,并计算代数式的值;
(2)设有理数0,,,在数轴上对应的点分别是点,点,点,点.
①请比较线段与线段的大小.
②若点是线段上的一动点,比较与的大小,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明将一张正方形卡纸剪去一个宽为4cm的长方形(记作A)后,再将剩下的长方形卡纸剪去一个宽为5cm的长方形(记作B).
(1)若长方形A与B的面积均为Scm2,求S的值.
(2)若A的周长是B的周长的倍,求原正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,如果△ABD的面积为15,那么△ACD的面积为( )
A. 15 B. 10 C. D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2经过点A(﹣2,﹣8).
(1)求此抛物线的函数解析式;
(2)写出这个二次函数图象的顶点坐标、对称轴;
(3)判断点B(﹣1,﹣4)是否在此抛物线上;
(4)求出此抛物线上纵坐标为﹣6的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).
(1)求证:方程有两个不相等的实数根;
(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com