【题目】已知关于 x 的一元二次方程(x﹣1)(x﹣2)=m(m+1)
(1)试证明:无论 m 取何值此方程总有两个实数根;
(2)若原方程的两根 x1,x 2 满足,求 m 的值.
【答案】(1)证明见解析(2)m=-
【解析】
(1)将原方程整理成一般式,根据方程的系数结合根的判别式,可得出△=(2m+1)2≥0,进而即可证出:无论m取何值此方程总有两个实数根;
(2)根据根与系数的关系可得出x1+x2=3,x1x2=2-m2-m,再结合x12+x22-x1x2=3m2+2,可得出关于m的一元一次方程,解之即可得出m的值.
(1)证明:原方程整理得:x2-3x+2-m2-m=0,
∵△=(-3)2-4×1×(2-m2-m)=4m2+4m+1=(2m+1)2≥0,
∴无论 m 取何值此方程总有两个实数根;
(2)解:∵x1,x2 是方程(x﹣1)(x﹣2)=m(m+1)的两个实数根,
∴x1+x2=3,x1x2= 2-m2-m.
∵x12+x22-x1x2=3m2+2,即(x1+x2)2-3x1x2=3m2+2,
∴32-3(2-m2-m)=3m2+2,
∴3m+1=0,
∴m=-.
科目:初中数学 来源: 题型:
【题目】小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:
(1)求拱桥所在抛物线的解析式;
(2)当水面下降1m时,则水面的宽度为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足,
(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.
(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:
甲 | 0 | 1 | 2 | 0 | 2 |
乙 | 2 | 1 | 0 | 1 | 1 |
关于以上数据的平均数、中位数、众数和方差,说法不正确的是
A. 甲、乙的平均数相等B. 甲、乙的众数相等
C. 甲、乙的中位数相等D. 甲的方差大于乙的方差
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=10cm,BC=16cm,∠B=90°,点P从点A开始沿着AB边向点B以1cm/s的速度移动(到B停止),点Q从点B开始沿着BC边向点C以2cm/s的速度移动(到C停止).如果P、Q分别从A、B同时出发,经过几秒钟,使△PBQ的面积是△ABC面积的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别在AC,AB上,BD与CE相交于点O,已知∠B=∠C,现添加下面的哪一个条件后,仍不能判定△ABD≌△ACE的是( )
A.AD=AEB.AB=ACC.BD=CED.∠ADB=∠AEC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)的图象相交于A(2,3)、B(a,1)两点.
(1)求这两个函数的表达式;
(2)求证:AB=2BC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com