分析 (1)已知等式变形后,利用非负数的性质求出m与n的值,即可确定出A,B,C的坐标;
(2)由AE+EB=AB,以及OF+BE=AB,得到AE=OF,根据四边形ABOC为正方形,得到CA=CO,且∠A=∠COF=90°,利用SAS得到三角形ACE与三角形OCF全等,利用全等三角形对应边相等得到CF=CE;
解答 解:(1)将(m-3)2+n2=6n-9变形得:(m-3)2+(n-3)2=0,
∴m=3,n=3,
∴A(3,3),B(3,0),C(0,3);
(2)∵OF+BE=AB,AE+EB=AB,
∴AE=OF,
∵四边形ABCD为正方形,
∴AC=OC,∠A=∠COF=90°,
在△ACE和△OCF中,
$\left\{\begin{array}{l}{AC=OC}\\{∠A=∠COF}\\{AE=OF}\end{array}\right.$,
∴△ACE≌△OCF(SAS),
∴CF=CE;
点评 此题涉及的知识有:坐标与图形性质,全等三角形的判定与性质,非负数的性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com