精英家教网 > 初中数学 > 题目详情
5.如图,在平面直角坐标系中,点A(n,m)在第一象限,AB⊥x轴于B,AC⊥y轴于C,(m-3)2+n2-6n+9=0,过C点作∠ECF分别交线段AB、OB于E、F两点.
(1)求m、n的值并写出A、B、C三点的坐标;
(2)若OF+BE=AB,求证:CF=CE.

分析 (1)已知等式变形后,利用非负数的性质求出m与n的值,即可确定出A,B,C的坐标;
(2)由AE+EB=AB,以及OF+BE=AB,得到AE=OF,根据四边形ABOC为正方形,得到CA=CO,且∠A=∠COF=90°,利用SAS得到三角形ACE与三角形OCF全等,利用全等三角形对应边相等得到CF=CE;

解答 解:(1)将(m-3)2+n2=6n-9变形得:(m-3)2+(n-3)2=0,
∴m=3,n=3,
∴A(3,3),B(3,0),C(0,3);
(2)∵OF+BE=AB,AE+EB=AB,
∴AE=OF,
∵四边形ABCD为正方形,
∴AC=OC,∠A=∠COF=90°,
在△ACE和△OCF中,
$\left\{\begin{array}{l}{AC=OC}\\{∠A=∠COF}\\{AE=OF}\end{array}\right.$,
∴△ACE≌△OCF(SAS),
∴CF=CE;

点评 此题涉及的知识有:坐标与图形性质,全等三角形的判定与性质,非负数的性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.某地拟召开一场安全级别较高的会议,预估将有4000至7000名人员参加会议,为了确保会议的安全,会议组委会决定对每位入场人员进行安全检查,现了解到安检设备有门式安检仪和手持安检仪两种:门式安检仪每台3000元,需安检员2名,每分钟可通过10人;手持安检仪每只500元,需安检员1名,每分钟可通过2人,该会议中心共有6个不同的入口,每个入口都有5条通道可供使用,每条通道只可安放一台门式安检仪或一只手持安检仪,每位安检员的劳务费用均为200元.(安检总费用包括安检设备费用和安检员的劳务费用)
现知道会议当日人员从上午9:00开始入场,到上午9:30结束入场,6个入口都采用相同的安检方案,所有人员须提前到达并根据会议通知从相应入口进入
(1)如果每个入口处,只有2个通道安放门式安检仪,而其余3个通道均为手持安检仪,在这个安检方案下,请问:在规定时间内可通过多少名人员?安检所需要的总费用为多少元?
(2)请你设计一个安检方案,确保安检工作的正常进行,同时使得安检所需要的总费用尽可能少.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.
(1)求证:OE=OF;
(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在△ABC中,∠BAC=90°,AB=AC,D为BC中点,且AE=CF.求证:△AED≌△CFD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.
求证:DC⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.甲、乙两车分别从相距200千米的A、B两地相向而行,甲乙两车均保持匀速,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇;若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.
(1)求甲乙两车的速度.
(2)若甲乙两车同时按原速度行驶1小时以后,甲车发生故障不动了,则乙车至少再以多大的速度行驶,才能保证在甲车出发以后3小时内与甲车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.
(1)求证:AD=EC;
(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE的面积)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,试说明一下论断正确的理由:
(1)∠BDC=90°;
(2)BF=AC;
(3)CE=$\frac{1}{2}BF$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知y=(m2+2m)x${\;}^{{m}^{2}+2m}$是关x于的反比例函数,求m的值及函数的解析式.

查看答案和解析>>

同步练习册答案