【题目】如图,AB为⊙O直径,D为弧AC的中点,DG⊥AB于G,交AC于E,AC、BD相交于F.
(1)求证:AE=DE;
(2)若AG=2,DG=4,求AF的长.
【答案】(1)见解析;(2)AF=5.
【解析】
(1)根据已知条件得到∠CAD=∠ABD,根据圆周角定理得到∠ADB=90°,根据余角的性质得到∠ADG=∠ABD,根据等腰三角形的判定定理即可得到结论;
(2)根据勾股定理得到AD= ,根据相似三角形的性质即可得到结论.
(1)∵D为的中点,
∴,
∴∠CAD=∠ABD,
∵AB为⊙O直径,
∴∠ADB=90°,
∵DG⊥AB于G,
∴∠AGD=90°,
∴∠DAG+∠ABD=∠DAG+∠ADG=90°,
∴∠ADG=∠ABD,
∴∠ADG=∠DAE,
∴AE=DE;
(2)∵AG=2,DG=4,
∴AD=,
∵∠DAF=∠ADG,∠AGD=∠ADF,
∴△ADF∽△DGA,
∴,
∴AF==5.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A、B,与y轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,则△ABD的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知BD是矩形ABCD的对角线,AB=20厘米,BC=40厘米.点P、Q同时从点A出发,分别以2厘米/秒、4厘米/秒的速度由A→B→C→D→A的方向在矩形边上运动,只要Q点回到点A,运动全部停止.设运动时间为t秒.
(1)当点P运动在AB(含B点)上,点Q运动在BC(含B、C点)上时,
①设PQ的长为y,求y关于时间t的函数关系式,并写出t的取值范围?
②当t为何值时,△DPQ是等腰三角形?
(2)在P、Q的整个运动过程中,分别判断下列两种情形是否存在?如果存在,请求出t的值;如果不存在,请说明理由.
①PQ与BD平行;
②PQ与BD垂直.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC三个顶点的坐标分别为A(﹣1,﹣1)、B(﹣3,﹣2)C(0,﹣3)
(1)以点C为旋转中心将△ABC顺时针旋转90°,得到△A1B1C1,则A1的坐标为 ;
(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;
(3)若网格单位长度为1,求(1)中AB扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一元二次方程:M:ax2+bx+c=0; N:cx2+bx+a=0,其中ac≠0,a≠c,以下四个结论:
①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
②如果方程M有两根符号相同,那么方程N的两根符号也相同;
③如果m是方程M的一个根,那么是方程N的一个根;
④如果方程M和方程N有一个相同的根,那么这个根必是x=1
正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;并写出点A2、B2、C2坐标;
(3)请画出△ABC绕O逆时针旋转90°后的△A3B3C3;并写出点A3、B3、C3坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年12月4日是第五个国家宪法日,也是第一个“宪法宣传周”.甲、乙两班各选派10名学生参加宪法知识竞赛(满分100分),成绩如下:
成绩 | 85 | 90 | 95 | 100 |
甲班参赛学生/人 | 1 | 1 | 5 | 3 |
乙班参赛学生/人 | 1 | 2 | 3 | 4 |
分别求甲、乙两班参赛学生竞赛成绩的平均数和方差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)求证:∠ACB=90°;
(3)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(4)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A1、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向下平移6个单位得到的△A1B1C1,并写出A1的坐标;
(2)请画出△ABC关于原点对称的△A2B2C2,并写出点B2的坐标;
(3)分别连接B2C和C2B,判断四边形CBC2B2是什么特殊的四边形(不用说明理由);
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com