精英家教网 > 初中数学 > 题目详情

如图,点M为∠COD的角平分线上一点,过点M作MC⊥OC于点C,MD⊥OD于点D,连接CD交OM于点N,则下列结论:①MC=MD,②∠CMO=∠DMO,③OM⊥CD,且NC=ND,④若∠1=30°,则OD=2MD,正确的有


  1. A.
    ①②③
  2. B.
    ①②④
  3. C.
    ③④
  4. D.
    ①③④
A
分析:利用∠COD关于角平分线的性质进行思考,得出结论后与所给出的项进行比对,选择符合要求的.
解答:∵点M为∠COD的角平分线上一点,过点M作MC⊥OC于点C,MD⊥OD于点D,
∴MC=MD,
∴△OMC≌△OMD,
∴∠CMO=∠DMO,
∴△ONC≌△OND,
∴∠ONC=∠OND=90°,
即OM⊥CD.
∴①②③对.
④应为若∠1=30°,则OM=2MD,故本选项错误.
故选A.
点评:本题主要考查了角平分线上的一点到两边的距离相等的性质;做题时,要对选项逐个验证.找准全等三角形是正确解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,点M为∠COD的角平分线上一点,过点M作MC⊥OC于点C,MD⊥OD于点D,连接CD交OM于点N,则下列结论:①MC=MD,②∠CMO=∠DMO,③OM⊥CD,且NC=ND,④若∠1=30°,则OD=2MD,正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

等边△ABO在直角坐标系中的位置如图所示,BO边在x轴上,点B的坐标为(-2,0)点,反比例函数y=
k
x
(x<0)经过点A.
(1)求这个反比例函数的解析式;
精英家教网
(2)如图,直线y=kx+2
3
与x轴,y轴交于C,D两点,与(1)中的反比例函数的图象交于E,F两点,EG⊥x轴于G点,FH⊥y轴于H点,若△DFH的面积记为S△DFH,已知S△DFH+S△FOE+S△ECG=
7
8
S△COD,求k的值;
精英家教网

(3)如图,点D为(1)中的等边△ABO外任意一点,且∠ADO=30°,连接AD,OD,BD,则AD2,OD2,BD2之间存在一个数量关系,写出你的结论并加以证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道:平行四边形的面积=(底边)×(这条底边上的高).
如图,四边形ABCD都是平行四边形,AD∥BC,AB∥CD,设它的面积为S.
(1)如图①,点M为AD上任意一点,则△BCM的面积S1=
1
2
1
2
S,
△BCD的面积S2与△BCM的面积S1的数量关系是
S1=S2
S1=S2

(2)如图②,设AC、BD交于点O,则O为AC、BD的中点,试探究△AOB的面积与△COD的面积之和S3与平行四边形的面积S的数量关系.
(3)如图③,点P为平行四边形ABCD内任意一点时,记△PAB的面积为Sˊ,△PCD的面积为S〞,平行四边形ABCD的面积为S,猜想得Sˊ、S〞的和与S的数量关系式为
S′+S″=
1
2
S
S′+S″=
1
2
S

(4)如图④,已知点P为平行四边形ABCD内任意一点,△PAB的面积为3,△PBC的面积为7,求△PBD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点M为∠COD的角平分线上一点,过点M作MC⊥OC于点C,MD⊥OD于点D,连接CD交OM于点N,则下列结论:①MC=MD,②∠CMO=∠DMO,③OM⊥CD,且NC=ND,④若∠1=30°,则OD=2MD,正确的有(  )
A.①②③B.①②④C.③④D.①③④
精英家教网

查看答案和解析>>

同步练习册答案