精英家教网 > 初中数学 > 题目详情

如图所示,在△ABC中,DE∥BC,△ADE和梯形DBCE的面积相等,则AD:DB=________.


分析:由△ADE和梯形DBCE的面积相等,且△ADE和梯形DBCE的面积之和等于△ABC的面积,所以△ADE的面积与△ABC的面积之比为1:2,然后由DE∥BC,根据两直线平行得到两对同位角相等,进而得到△ADE与△ABC相似,根据相似三角形的面积比等于相似比的平方,由面积之比求出相似比,进而求出对应边AD与AB的比,根据比例性质即可求出AD:DB的比值.
解答:∵△ADE和梯形DBCE的面积相等,
∴S△ADE=S△ABC,即=
又∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,
∴△ADE∽△ABC,∴=
则AD:DB=1:(-1)=+1.
故答案为:+1
点评:此题考查了相似三角形的判定与性质,要求学生掌握两三角形相似时,对应边之比等于相似比;周长比等于相似比;对应量(除面积)之比等于相似比;面积之比等于相似比的平方.此题的关键是利用面积之比求出相似比即对应边之比,这种方法称为“列比例式求解法”.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案