【题目】如图,AC与BD相交于点O,∠DAB=∠CBA,添加下列哪一个条件后,仍不能使△ADB≌△CBA的是( )
A.AD=BCB.∠ABD=∠BACC.OA=OBD.AC=BD
科目:初中数学 来源: 题型:
【题目】综合与探究:
(1)操作发现:如图1,在中,为锐角,为射线上一动点,连接,以为直角边且在的上方作等腰直角三角形.若,.当点在线段上时(与点不重合),你能发现与的数量关系和位置关系吗?请直接写出你发现的结论.
(2)类比与猜想:当点在线段的延长线上时,其余条件不变,(1)中的结论是否仍然成立?请在图2中画出相应图形并说明理由.
(3)深入探究:如图3,若,,,点在线段上运动,请写出与的位置关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.
(2)求取出的两张卡片上的数字之和为偶数的概率P.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是⊙O的切线,在⊙O上取点D,连接CD,使得AC=CD,延长CD交直线AB于点E.
(1)求证:CD是⊙O的切线.
(2)若AC=2,AE=6.
①求⊙O的半径.
②点M是优弧上的一个动点(不与B,D重合),求MD,MB及弧BD围成的阴影部分面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)画出△ABC关于y轴的对称轴图形△A1B1C1(不写画法);
点A1的坐标为 ;点B1的坐标为 ;点C1的坐标为 .
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的边AB、AC为边向外作等边三角形△ABD与△ACE,线段BE交DC于点F,下列结论:①CD=BE;②FA平分∠BAC;③∠BFC=120°,④FA+FB=FD,其中正确有( )个.
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
①当点G与点D重合时,求平移距离m的值;
②用含x的式子表示平移距离m,并求m的最大值;
(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李大妈加盟了“红红”全国烧烤连锁店,该公司的宗旨是“薄利多销”,经市场调查发现,当羊肉串的单价定为元时,每天能卖出串,在此基础上,每加价元李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为元,若李大妈每天销售这种羊肉串想获得利润是元,那么请问这种羊肉串应怎样定价?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com