精英家教网 > 初中数学 > 题目详情
关于x的方程x2+2(k+2)x+k2=0的两实根之和大于-4,则k的取值范围是( )
A.k>-1
B.k<0
C.-1<k<0
D.-1≤k<0
【答案】分析:根据根的判别式求出k≥-1,根据根与系数的关系求出-(2k+4)>-4,求出k<0,即可求出答案.
解答:解:设x的方程x2+2(k+2)x+k2=0的两实根是a b,
由根与系数的关系得:a+b=-=-(2k+4),
∵关于x的方程x2+2(k+2)x+k2=0的两实根之和大于-4
∴-(2k+4)>-4,
∴k<0,
b2-4ac=[2(k+2)]2-4×1×k2=8k+8≥0,
k≥-1,
即k的取值范围是-1≤k<0.
故选D.
点评:本题考查了根的判别式和根与系数的关系,注意:应用根与系数的关系式的前提条件是b2-4ac≥0,a≠0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果关于x的方程x2+x-
1
4
k=0
没有实数根,那么k的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

用配方法解关于x的方程x2+px=q时,应在方程两边同时加上(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2x+k=0的一根是2,则k=
0
0

查看答案和解析>>

科目:初中数学 来源: 题型:

通过观察,发现方程不难求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)观察上述方程及其解,可猜想关于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a

(2)试验证:当x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的结论,解关于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
无解,求a的值?

查看答案和解析>>

同步练习册答案