分析 (1)延长AP交BD于M,根据三角形外角性质和平行线性质得出∠APB=∠AMB+∠PBD,∠PAC=∠AMB,代入求出即可;
(2)过P作EF∥AC,根据平行线性质得出∠PAC+∠APF=180°,∠PBD+∠BPF=180°,即可得出答案;
(3))①当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.
解答 解:(1)如图,过点P向左作PQ∥AC,则∠APQ=∠PAC,
∵AC∥BD,
∴PQ∥BD,
∴∠BPQ=∠PBD,
∵∠APB=∠APQ+∠BPQ,
∴∠APB=∠PAC+∠PBD;
(2)∠APB=∠PAC+∠PBD不成立,如图2,
理由是:过P作EF∥AC,
∵AC∥BD,
∴AC∥EF∥BD,
∴∠PAC+∠APF=180°,∠PBD+∠BPF=180°,
∴∠PAC+∠APF+∠PBD+∠BPF=360°,
∴∠APB+∠PAC+∠PBD=360°,
∴∠APB=360°-∠PAC-∠PBD,
∵∠APB≠180°,
∴∠APB=∠PAC+∠PBD不成立.
(3)①当动点P在射线BA的右侧时,如图3,结论是∠PBD=∠PAC+∠APB,
理由是:∵AC∥BD,
∴∠PMC=∠PBD,
∵∠PMC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
点评 考查了平行线的性质和三角形外角性质的应用,用了分类讨论思想,考查对材料的分析研究能力和对平行线及角平分线性质的掌握情况.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com