精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线的对称轴是直线x=2.

(1)求出该抛物线的解析式.
(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:
①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,的值是否发生变化?若发生变化,说明理由;若不发生变化,求出的值.
②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.
(1)
(2)①的值不变。理由见解析
②存在。理由见解析

分析:(1)根据抛物线过原点和对称轴为直线x=2这两个条件确定抛物线的解析式。
(2)①如答图1所述,证明Rt△PAE∽Rt△PGF,则有的值是定值,不变化。
②若△DMF为等腰三角形,可能有三种情形,需要分类讨论,避免漏解。
解:(1)∵抛物线经过原点,∴n=0。
∵抛物线对称轴为直线x=2,∴,解得
∴抛物线的解析式为:
(2)①的值不变。理由如下:
如答图1所示,过点P作PG⊥x轴于点G,则PG=AO=2.

∵PE⊥PF,PA⊥PG,∴∠APE=∠GPF。.
在Rt△PAE与Rt△PGF中,
∵∠APE=∠GPF,∠PAE=∠PGF=90°,
∴Rt△PAE∽Rt△PGF。
。.
②存在。
抛物线的解析式为:
令y=0,即,解得:x=0或x=4,∴D(4,0)。
,∴顶点M坐标为(2,﹣1)。
若△DMF为等腰三角形,可能有三种情形:
(ⅰ)FM=FD,如答图2所示,

过点M作MN⊥x轴于点N,则MN=1,ND=2,
设FM=FD=x,则NF=ND﹣FD=2﹣x.
在Rt△MNF中,由勾股定理得:NF2+MN2=MF2
即:,解得:
∴FD=,OF=OD﹣FD
∴F(,0)。
(ⅱ)若FD=DM.如答图3所示,

此时FD=DM=,∴OF=OD﹣FD=
∴F(,0)。
(ⅲ)若FM=MD,
由抛物线对称性可知,此时点F与原点O重合,而由题意可知,点E与点A重合后即停止运动,故点F不可能运动到原点O。
∴此种情形不存在。
综上所述,存在点F(,0)或F(,0),使△DMF为等腰三角形。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=a(x﹣h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点C.

(1)求此抛物线的解析式.
(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.
(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.
(1)填空:D点坐标是(    ),E点坐标是(    );
(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;

(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线(a≠0)经过点A(4,0)与点(﹣2,6).

(1)求抛物线的解析式;
(2)直线m与⊙C相切于点A,交y轴于点D,动点P在线段OB上,从点O出发向点B运动,同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长.当PQ⊥AD时,求运动时间t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,若二次函数的图象与x轴交于点A(-2,0),B(3,0)两点,点A关于正比例函数的图象的对称点为C。
(1)求b、c的值;
(2)证明:点C 在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数的图象于点D,连结AC,交正比例函数的图象于点E,连结AD、CD。如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动,当其中一个到达终点时,另一个随之停止运动,连结PQ、QE、PE,设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC,若存在,求出t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图像和二次函数的图像都经过两点,且点 轴上,点的纵坐标为5.

(1)求这个二次函数的解析式;
(2)将此二次函数图像的顶点记作点,求△的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有
A.3个B.2个C.1个D.0个

查看答案和解析>>

同步练习册答案