【题目】在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=3.
(1)如图1,求抛物线的解析式;
(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;
(3)如图3,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.
【答案】(1)y=﹣x2+x+3;(2)D的坐标为(3,3);(3)
【解析】
(1)通过抛物线y=先求出点A的坐标,推出OA的长度,再由tan∠CAO=3求出OC的长度,点C的坐标,代入原解析式即可求出结论;
(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证△DZE≌△DWB,得到DZ=DW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;
(3)如图3,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.
解:(1)在抛物线y=中,
当y=0时,x1=﹣1,x2=4,
∴A(﹣1,0),B(4,0),
∴OA=1,
∵tan∠CAO=3,
∴OC=3OA=3,
∴C(0,3),
∴a=3,
∴a=2,
∴抛物线的解析式为:y=﹣x2+x+3;
(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,
∵∠ZDW=∠EDB=90°,
∴∠ZDE=∠WDB,
∵∠DZE=∠DWB=90°,DE=DB,
∴△DZE≌△DWB(AAS),
∴DZ=DW,
设点D(k,﹣k2+k+3),
∴k=﹣k2+k+3,
解得,k1=﹣(舍去),k2=3,
∴D的坐标为(3,3);
(3)如图3,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,
∵sin∠DGH=
∴设HI=4m,HG=5m,则IG=3m,
由题意知,四边形OCDH是正方形,
∴CD=DH=3,
∵∠CDQ+∠IDH=90°,∠IDH+∠DHI=90°,
∴∠CDQ=∠DHI,
又∵∠CQD=∠DIH=90°,
∴△CQD≌△DIH(AAS),
设DI=n,
则CQ=DI=n,DQ=HI=4m,
∴IQ=DQ﹣DI=4m﹣n,
∴GQ=GI﹣IQ=3m﹣(4m﹣n)=n﹣m,
∵∠GCQ+∠QCD=90°,∠QCD+∠CDQ=90°,
∴∠GCQ=∠CDQ,
∴△GCQ∽△CDQ,
∴
∴
∴n=2m,
∴CQ=DI=2m,
∴IQ=2m,
∴tan∠CDG=,
∵CD=3,
∴CG=,
∴GO=CO﹣CG=,
设直线DG的解析式为y=kx+,
将点D(3,3)代入,
得,k=,
∴yDG=,
设点F(t,﹣t2+t+3),
则﹣t2+t+3=t+,解得,t1=3(舍去),t2=﹣,
∴F(﹣,)
过点F作DC的垂线,交DC的延长线于点U,
则,
∴在Rt△UFD中,
DF=,
由翻折知,△NPM≌△NPT,
∴∠MNP=∠TNP,NM=NT=ND,∠TPN=∠MPN,TP=MP,
又∵NS⊥KD,
∴∠DNS=∠TNS,DS=TS,
∴∠SNK=∠TNP+∠TNS=×90°=45°,
∴∠SKN=45°,
∵∠TPK=180°﹣∠TPN,∠MPK=180°﹣∠MPN,
∴∠TPK=∠MPK,
又∵PK=PK,
∴△TPK≌△MPK(SAS),
∴∠MKP=∠TKP=45°,
∴∠DKM=∠MKP+∠TKP=90°,
连接FN,DM,交点为R,再连接RK,
则RK=RF=RD=RN=RM,
则点F,D,N,M,K同在⊙R上,FN为直径,
∴∠FKN=90°,∠KDN=∠KFN,
∵FN=,
∴在Rt△FKN中,
∴cos∠KDN=cos∠KFN.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜坡底端C处测得教学楼顶端A的仰角为68°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6m,求楼房AB的高度.(结果精确到0.1m,参考数据:tan68°≈2.48,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点均在小正方形的顶点上.
(1)在图中画出以AB为底的等腰三角形ABC,点C在小正方形的顶点上,且△ABC的面积是7.5;
(2)在(1)的条件下,在图中画出以AC为斜边的直角三角形ACE(AE<EC),点E在小正方形的顶点上,且△ACE的面积是5,连接EB,并直接写出tan∠AEB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程有两个不相等的实数根.
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c过点A(3, 0)、点B(0, 3).点M(m, 0)在线段OA上(与点A、O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.
(1)求抛物线表达式;
(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;
(3)当△PBQ为等腰三角形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知直线与直线相交于点A,与轴相交于点B,与轴相交于点C,抛物线经过点O、点A和点B,已知点A到轴的距离等于2.
(1)求抛物线的解析式;
(2)点H为直线上方抛物线上一动点,当点H到的距离最大时,求点H的坐标;
(3)如图,P为射线OA的一个动点,点P从点O出发,沿着OA方向以每秒个单位长度的速度移动,以OP为边在OA的上方作正方形OPMN,设正方形POMN与△OAC重叠的面积为S,设移动时间为t秒,直接写出S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农科所在相同条件下做某作物种子发芽率的实验,结果如下表所示:
种子个数 | 200 | 300 | 500 | 700 | 800 | 900 | 1000 |
发芽种子个数 | 187 | 282 | 435 | 624 | 718 | 814 | 901 |
发芽种子率 | 0.935 | 0.940 | 0.870 | 0.891 | 0.898 | 0.904 | 0.901 |
下面有四个推断:
①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891;
②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);
③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;
④若用频率估计种子发芽的概率约为0.9,则可以估计种子中大约有的种子不能发芽.
其中合理的是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com