精英家教网 > 初中数学 > 题目详情
18.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-$\frac{3}{2},{y}_{1}$),($\frac{10}{3},{y}_{2}$)是抛物线上两点,则y1<y2其中结论正确的是(  )
A.①②B.②③C.②④D.①③④

分析 由抛物线开口方向得到a<0,有对称轴方程得到b=-2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=-2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(-$\frac{3}{2},{y}_{1}$)与点($\frac{10}{3},{y}_{2}$)到对称轴的距离可对④进行判断.

解答 解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=-$\frac{b}{2a}$=1,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵b=-2a,
∴2a+b=0,所以②正确;
∵抛物线与x轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(3,0),
∴当x=2时,y>0,
∴4a+2b+c>0,所以③错误;
∵点(-$\frac{3}{2},{y}_{1}$)到对称轴的距离比点($\frac{10}{3},{y}_{2}$)对称轴的距离远,
∴y1<y2,所以④正确.
故选C.

点评 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的$\frac{2}{3}$;甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.
(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;
(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,扇形OAB上有一动点P,P从点A出发,沿$\widehat{AB}$、线段BO、线段OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是 (  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论,其中正确结论是(  )
A.b2<4ac
B.2a+b=0
C.a+b+c>0
D.若点B($\frac{5}{2}$,y1)、C($\frac{1}{2}$,y2)为函数图象上的两点,则y1<y2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了(  )秒.
A.200B.150C.100D.80

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.一次函数y=mx+n的图象经过点(1,-2),则代数式(m+n-1)(1-m-n)的值为-9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.为了推动课堂教学改革,打造高效课堂,某中学对七年级部分学生就一学期以来“小组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:
(1)求本次被调查的七年级学生的人数,
(2)并补全条形统计图2
(3)该校七年级级学生共有720人,请你你估计该校七年级有多少名学生支持“小组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在函数y=$\frac{1}{{x}^{2}-1}$中,自变量x的取值范围是x≠±1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.哈尔滨地铁2号线总投资约2 000 000 000元,这个数用科学记数法可表示为2×109

查看答案和解析>>

同步练习册答案