精英家教网 > 初中数学 > 题目详情
抛物线y=﹣x2平移后的位置如图所示,点A,B坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.

(1)求平移后的抛物线的解析式和点D的坐标;
(2)∠ACB和∠ABD是否相等?请证明你的结论;
(3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.
解:(1)∵将抛物线y=﹣x2平移,平移后的抛物线与x轴交于点A(﹣1,0)和点B(3,0),
∴平移后的抛物线的表达式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,即y=﹣x2+2x+3。
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点D的坐标为(1,4)。
(2)∠ACB与∠ABD相等。理由如下:
如图,∵y=﹣x2+2x+3,

∴当x=0时,y=3,即C点坐标为(0,3)。
又∵B(3,0),∠BOC=90°,
∴OB=OC,∠OBC=∠OCB=45°。
在△BCD中,∵BC2=32+32=18,CD2=12+12=2,BD2=22+42=20,
∴BC2+CD2=BD2。∴∠BCD=90°。

∵在△AOC中,∠AOC=90°,∴tan∠ACO=
∴tan∠ACO=tan∠CBD。∴∠ACO=∠CBD。
∴∠ACO+∠OCB=∠CBD+∠OBC,即∠ACB=∠ABD。
(3)∵点P在平移后的抛物线的对称轴上,而y=﹣x2+2x+3的对称轴为x=1,
∴可设P点的坐标为(1,n)。
∵△ABC是锐角三角形,∴当△CDP与△ABC相似时,△CDP也是锐角三角形。
∴n<4,即点P只能在点D的下方。
又∵∠CDP=∠ABC=45°,∴D与B是对应点,分两种情况:

①如果△CDP∽△ABC,那么
。解得n=
∴P点的坐标为(1,)。
②如果△CDP∽△CBA,那么
,解得n=
∴P点的坐标为(1,)。
综上可知P点的坐标为(1,)或(1,)。

试题分析:(1)根据平移不改变二次项系数a的值,且平移后的抛物线与x轴交于点A(﹣1,0)和点B(3,0),可知平移后抛物线的表达式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,再运用配方法化为顶点式,即可求出顶点D的坐标。
(2)先由B、C两点的坐标,得出∠OBC=∠OCB=45°,再根据勾股定理的逆定理判断△BCD是直角三角形,且∠BCD=90°,则由正切函数的定义求出tan∠CBD=,在△AOC中,由正切函数的定义也求出tan∠ACO=,得出∠ACO=∠CBD,则∠ACO+∠OCB=∠CBD+∠OBC,即∠ACB=∠ABD。
(3)设P点的坐标为(1,n),先由相似三角形的形状相同,得出△CDP是锐角三角形,则n<4,再根据∠CDP=∠ABC=45°,得到D与B是对应点,所以分两种情况进行讨论:
①△CDP∽△ABC;
②△CDP∽△CBA。
根据相似三角形对应边的比相等列出关于n的方程,解方程即可。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C

(1)求抛物线的函数解析式.
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.
(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).

(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线与x、y轴分别交于点A、C.抛物线的图象经过A、C和点B(1,0).

(1)求抛物线的解析式;
(2)在直线AC上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D的坐标,并求出最大距离是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.

(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的大致图象为【   】
 
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2

(1)求S与x的函数关系式;
(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是
A.a<0
B.b2﹣4ac<0
C.当﹣1<x<3时,y>0
D.

查看答案和解析>>

同步练习册答案