精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE=15,则△ABC的面积是
 
考点:勾股定理,三角形的重心,等腰三角形的性质
专题:
分析:先根据题意得出点F是△ABC的重心,再根据重心的性质得出DF即BF的长,由勾股定理得出BD的长,根据三角形的面积公式即可得出结论.
解答:解:∵△ABC中,AB=AC,AD⊥BC于D,
∴BD=
1
2
BC.
∵AE=EC,
∴点F是△ABC的重心.
∵AD=18,BE=15,
∴DF=
1
3
AD=6,BF=
2
3
BE=10,
∴BD=
102-62
=8,
∴BC=2BD=16,
∴S△ABC=
1
2
BC•AD=
1
2
×16×18=144.
故答案为:144.
点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先将式子(1+
1
x
2÷
x2-1
x2
化简,然后请你选一个喜欢的x的值代入求出原式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:-1-{(-3)2-[3÷
2
3
×(-
3
2
)
]÷(-2)}.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
72
327
-
16
1
8
-2sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D、E分别是△ABC的边AB、AC的中点,点O是△ABC内部任意一点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
求证:四边形DGFE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

从前有一个醉汉拿着竹竿进城,横拿竖拿都进不去,横着比城门宽
4
3
m,竖着比城门高
2
3
m,一个聪明人告诉他沿着城门的两对角斜着拿杆,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程,并把它化为一般形式.

查看答案和解析>>

科目:初中数学 来源: 题型:

化简:-(-6)=
 
,-|
2
5
|=
 
,-|-
3
7
|=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2014年上半年,潍坊市经济运行呈现出良好发展态势,全市实现地区生产总值约为2380亿元,问比增长9.1%,增幅高于全国、全省平均水平,总量居全省第四位,主要经济指标增速度高于全省平均水平,其中2380亿这个数用科学记数法表示为(  )
A、238×1010
B、23.8×1010
C、2.38×1011
D、2.38×1012

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点P在∠AOB内部,请你利用直尺(没有刻度)和圆规在∠AOB的角平分线上求作一点Q,使得PQ⊥OB.(不要求写作法,但要保留作图痕迹)

查看答案和解析>>

同步练习册答案