精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.

证明见解析.

解析试题分析:由AD∥BC,可证明△EAD∽△ECB,利用相似三角形的性质即可求出BE的长,过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,所以CF=AD,再根据勾股定理的逆定理证明BD⊥DF即可证明AC⊥BD.
试题解析:∵AD∥BC,∴△EAD∽△ECB. ∴AE:CE=DE:BE.
∵AE=4,CE=8,DE=3,∴BE=6.
∵S梯形=(AD+BC)×=54,∴AD+BC=15.
过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,
∴CF="AD." ∴BF=AD+BC=15.
在△BDF中,BD2+DF2=92+122=225,BF2=225,∴BD2+DF2=BF2. ∴BD⊥DF.
∵AC∥DF,∴AC⊥BD.

考点:1.梯形的性质;2.相似三角形的判定和性质;3.平行四边形的判定和性质;4.勾股定理的逆定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在边长为1的正方形网格中有两个三角形△ABC和△DEF,试证这两个三角形相似.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

提出问题

如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
类比探究
如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
拓展延伸
如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.

(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.
(1)如图1,当点M在AB边上时,连接BN

①试说明:
②若∠ABC=60°,AM=4,求点M到AD的距离.
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.

(1)求证:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,△是等边三角形,点分别在边上,

(1)求证:△∽△;(2)如果,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.

(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2
(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;
(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?
答:   (填“成立”或“不成立”)

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案