分析 [发现与证明](1)由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;
(2)根据等腰三角形的性质得出DE=B′E,证出∠CB′D=∠B′DA=$\frac{1}{2}$(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;
[应用与探究]:分两种情况:①由矩形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由矩形的性质和已知条件得出AC=4$\sqrt{3}$.
解答 解:[发现与证明]:(1)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠EAC=∠ACB,
∵△ABC≌△AB′C,
∴∠ACB=∠ACB′,BC=B′C,
∴∠EAC=∠ACB′,
∴AE=CE,
即△ACE是等腰三角形;
∴DE=B′E;
故答案为:=;
(2)∵DE=B′E,
∴∠CB′D=∠B′DA=$\frac{1}{2}$(180°-∠B′ED),
∵∠AEC=∠B′ED,
∴∠ACB′=∠CB′D,
∴B′D∥AC;
[应用与探究]:分两种情况:①如图1所示:
∵四边形ACDB′是矩形,
∴∠CAB′=90°,
∴∠BAC=90°,
∵∠B=60°,
∴AC=$\frac{\sqrt{3}}{2}$BC=2$\sqrt{3}$;
②如图2所示:
∵四边形ACB′D是矩形,
∴∠ACB′=90°,
∴∠ACB=90°,
∵BC=4,∠B=60°,
∴AC=4$\sqrt{3}$,
综上所述:AC的长为2$\sqrt{3}$或4$\sqrt{3}$.
点评 本题考查了平行四边形的性质、矩形的性质、翻折变换、等腰三角形的判定以及平行线的判定;熟练掌握平行四边形的性质、翻折变换的性质,并能进行推理计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
运动项目 | 频数(人数) | 频率 |
篮球 | 30 | 0.25 |
羽毛球 | m | 0.20 |
乒乓球 | 36 | n |
跳绳 | 18 | 0.15 |
其它 | 1 | 0.10 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -$\frac{5}{4}$ | B. | -$\frac{125}{16}$ | C. | -25 | D. | 11 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{BD}{BC}$=$\frac{\sqrt{5}-1}{2}$ | B. | AD,AE将∠BAC三等分 | ||
C. | △ABE≌△ACD | D. | S△ADH=S△CEG |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com