【题目】如图△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC,垂足为D.
(1)求证:BE=CF;
(2)若AB=8,AC=6,AD=5,求⊙O的半径.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)由圆周角定理得出∠ABE=90°,得出∠BAE+∠BEA=90°,由AF⊥BC得出∠ACD+∠CAD=90°,由圆周角定理得出∠BEA=∠ACD,再由同圆或等圆中,相等的圆周角所对的弦相等,即可得出结论;
(2)证明△ABE∽△ADC,得出对应边成比例,求出直径AE,即可得出结论.
试题解析:(1)证明:∵AE是⊙O的直径,∴∠ABE=90°,∴∠BAE+∠BEA=90°,∵AF⊥BC,∴∠ADC=90°,∴∠ACD+∠CAD=90°,又∵∠BEA=∠ACD,∴∠BAE=∠CAD,∴BE=CF;
(2)解:∵∠ABE=∠ADC=90°,∠BEA=∠ACD,∴△ABE∽△ADC,∴ ,即 ,解得:AE=,∴半径r=.
科目:初中数学 来源: 题型:
【题目】下列命题: ①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④同角或等角的补角相等.其中正确的命题有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家电销售商店1-6周销售甲、乙两种品牌冰箱的数量如图所示(单位:台):
(1)分别求该商店这段时间内甲、乙两种品牌冰箱周销售量的平均数和方差;
(2)根据计算结果及折线统计图,对该商店今后采购这两种品牌冰箱的意向提出建议,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中是假命题的是( )
A. 两点的所有连线中,线段最短
B. 两条直线被第三条直线所截,同位角相等
C. 等式两边加同一个数,结果仍相等
D. 不等式两边加同一个数,不等号的方向不变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com