精英家教网 > 初中数学 > 题目详情

【题目】如图,把△ABC 绕点 A 顺时针旋转 n 度(0<n<180)后得到△ADE,并使点 D 落在 AC 的延长线上.

(1)若∠B=17°,∠E=55°,求 n;

(2)F BC 的中点,G DE 的中点,连 AG、AF、FG,求证:△AFG 为等腰三角形.

【答案】(1)108°(2)证明见解析

【解析】

(1)根据旋转的性质得到∠ACB=∠E=55°,根据三角形的内角和得到∠

BAC=180°﹣55°﹣17°=108°,于是得到结论;

(2)根据旋转的性质得到 AB=AD BC=DE,∠B=∠D,根据线段中点的定义得到 BF= BC DG=DE,根据全等三角形的性质即可得到结论.

(1)∵△ADE 是由△ABC 旋转而来,

∴∠ACB=∠E=55°,

又∵∠B=17°,

∴∠BAC=180°﹣55°﹣17°= 108°,

∵D 落在 AC 延长线上,

∴∠BAC 即为旋转角,

∴n=108°;

(2)证明:∵△ADE 是由△ABC 旋转而来,

∴AB=AD BC=DE,∠B=∠D,

∵F、G 分别是 BC、DE 的中点,

∴BF= BC DG= DE,

∴BF=DG,

在△ABF 与△ADG 中

∴△ABF≌△ADG(SAS),

∴AF=AG,

∴△ADF 是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,利用一面院墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x.

1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求Sx之间的函数关系;

2)在(1)的条件下,若围成的花圃面积为45平方米,求AB的长;

3)在(1)的条件下,能否围成面积比45平方米更大的花圃?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=-x2+2x+3.

(1)求函数图像的顶点坐标,并画出这个函数的图像;

(2)根据图像,直接写出:

①当函数值y为正数时,自变量x的取值范围;

②当-2<x<2时,函数值y的取值范围;

③若经过点(0,k)且与x轴平行的直线l与y=-x2+2x+3的图像有公共点,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为正方形ABCD的中心,AD1BE平分∠DBCDC于点E,延长BC到点F,使BDBF,连结DFBE的延长线于点H,连结OHDC于点G,连结HC.则以下四个结论中:OHBF;②OGGH21;③GH;④∠CHF2EBC;⑤CH2HEHB.正确结论的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读资料)

同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.

1)求4x2+16x+19的最小值.

解:4x2+16x+194x2+16x+16+34x+22+3

因(x+22大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2

2)求﹣m2m+2的最大值

解:﹣m2m+2=﹣(m2+m+2=﹣

大于等于0,所以﹣小于等于0,所以﹣

小于等于,即﹣m2m+2的最大值是,此时,m=﹣

(探索发现)

如图①,是一张直角三角形纸片,∠B90°AB8BC6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DEEF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.

解:在AC上任取点E,作EDBCEFAB,得到矩形BDEF.设EFx

易证△AEF∽△ACB,则

请你写出剩余部分

(拓展应用)

如图②,在△ABC中,BCaBC边上的高ADh,矩形PQMN的顶点PN分别在边ABAC上,顶点QM在边BC上,则矩形PQMN面积的最大值为   .(用含ah的代数式表示)

(灵活应用)

如图③,有一块缺角矩形ABCDEAB32BC40AE20CD16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为   .(直接写出答案)

(实际应用)

如图④,现有一块四边形的木板余料ABCD,经测量AB70cmBC108cmCD76cm,且∠B=∠C60°,木匠徐师傅从这块余料中裁出了顶点MN在边BC上且面积最大的矩形PQMN,该矩形的面积为   .(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1E是正方形ABCDAB上的一点,连接BDDE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G

线段DBDG的数量关系是   

写出线段BEBFDB之间的数量关系.

2)当四边形ABCD为菱形,∠ADC60°,点E是菱形ABCDAB所在直线上的一点,连接BDDE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G

如图2,点E在线段AB上时,请探究线段BEBFBD之间的数量关系,写出结论并给出证明;

如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE1AB2,直接写出线段GM的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+(2m+1)x+m20有两个根x1x2.

(1)m的取值范围.

(2)x12+x1x20时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是(  )

A. 当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m

B. 小球距O点水平距离超过4米呈下降趋势

C. 小球落地点距O点水平距离为7

D. 斜坡的坡度为1:2

查看答案和解析>>

同步练习册答案