精英家教网 > 初中数学 > 题目详情
30、如图,已知直线AB∥CD,求∠A+∠C与∠AEC的大小关系并说明理由.
分析:过E作EF∥AB,根据平行的传递性,则有EF∥CD,再根据两直线平行内错角相等的性质可求.
解答:解:∠A+∠C=∠AEC.
理由:过E作EF∥AB,
∵EF∥AB,
∴∠A=∠AEF(两直线平行内错角相等),
又∵AB∥CD,EF∥AB,
∴EF∥CD,
∴∠C=∠CEF(两直线平行内错角相等),
又∵∠AEC=∠AEF+∠CEF,
∴∠AEC=∠A+∠C.
点评:解题的关键是正确作出辅助线,然后根据两直线平行内错角相等的性质解此类题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于
35
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,已知直线AB、CD相交于点O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线AB和CD相交于O点,∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)直线AD与BC有何位置关系?请说明理由.
(2)求∠DBE的度数.
(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度数.

查看答案和解析>>

同步练习册答案