精英家教网 > 初中数学 > 题目详情
4.如图,已知AB∥CD,BE平分∠ABC,∠C=150°,则∠CDE的度数是165°.

分析 先根据平行线的性质以及角平分线的定义,求得∠DBC的度数,再根据三角形外角性质,求得∠CDE的度数.

解答 解:∵AB∥CD,∠C=150°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠DBC=15°,
∵∠CDE是△BCD的外角,
∴∠CDE=∠C+∠DBC=150°+15°=165°.
故答案为:165°.

点评 本题主要考查了平行线的性质以及三角形外角性质的综合应用,解决问题的关键是掌握:三角形的一个外角等于和它不相邻的两个内角的和.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.小明到工厂去进行社会实践活动时,发现工人师傅生 产了一种如图所示的零件,
工人师傅告诉他:AB∥CD,∠BAE=45°,∠1=60°,小明马上运用已学的数学知识得出∠ECD的度数.你能求出∠ECD的度数吗?如果能,请写出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30m,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=60°..
(1)求BD的长;
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2
(1)求∠A的度数.
(2)若点A到线段BG的距离是a,求a2
(3)求正八边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知关于x的一元二次方程x2+mx+m-1=0有两个相等的实数根.求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知x=$\frac{1}{\sqrt{2}-\sqrt{3}+1}$,y=$\frac{1}{\sqrt{2}+\sqrt{3}+1}$,求代数式$\frac{1}{x}$+$\frac{1}{y}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在平面直角坐标系中,如果某点P的横坐标和纵坐标相等,则称点P为“梦之点”.例如点(1,1),(-2016,-2016),(-$\sqrt{3}$,-$\sqrt{3}$),…,都是“梦之点”.
(1)分别判断函数y=-2x+1和y=x2+1的图象上是否存在“梦之点”?若存在,求出点“梦之点”的坐标;
(2)若二次函数y=ax2+4x+c的图象上有且只有一个“梦之点”($\frac{3}{2}$,$\frac{3}{2}$),且当0≤x≤m时,函数y=ax2+4x+c-$\frac{3}{4}$(a≠0)的最小值为-3,最大值为1,求m的取值范围;
(3)直线l:y=kx+2经过“梦之点”P,与x轴交于点D,与反比例函数y=$\frac{n}{x}$的图象交于M,N两点(点M在点N的左侧),若点P的横坐标为1,且满足DM+DN<3$\sqrt{2}$,请直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知抛物线y=-x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)求出△BCP的周长.
(3)在直线BC上方的抛物线上是否存在点Q(不与P重合),使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图绕着它的中心经过怎样的旋转可以与它自身重合?

查看答案和解析>>

同步练习册答案