6£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬AD¡ÍBCÓÚµãD£¬BC=10cm£¬AD=8cm£¬µãP´ÓµãB³ö·¢£¬ÔÚÏ߶ÎBCÉÏÒÔÿÃë3cmµÄËÙ¶ÈÏòµãCÔÈËÙÔ˶¯£¬Óë´Ëͬʱ£¬´¹Ö±ÓÚADµÄÖ±Ïßm´Óµ×±ßBC³ö·¢£¬ÒÔÿÃë2cmµÄËÙ¶ÈÑØDA·½ÏòÔÈËÙƽÒÆ£¬·Ö±ð½»AB£¬AC£¬ADÓÚE¡¢F¡¢H£¬µ±µãPµ½´ïµãCʱ£¬µãPÓëÖ±ÏßmͬʱֹͣÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪtÃ루t£¾0£©£®
£¨1£©µ±t=2ʱ£¬Á¬½ÓDE¡¢DF£¬ÇóÖ¤£ºËıßÐÎAEDFΪÁâÐΣ»
£¨2£©ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬ËùÐγɵġ÷PEFµÄÃæ»ý´æÔÚ×î´óÖµ£¬µ±¡÷PEFµÄÃæ»ý×î´óʱ£¬ÇóÏ߶ÎBPµÄ³¤£®

·ÖÎö £¨1£©Èç´ðͼ1Ëùʾ£¬ÀûÓÃÁâÐεĶ¨ÒåÖ¤Ã÷£»
£¨2£©Èç´ðͼ2Ëùʾ£¬Ê×ÏÈÇó³ö¡÷PEFµÄÃæ»ýµÄ±í´ïʽ£¬È»ºóÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó½â£®

½â´ð £¨1£©Ö¤Ã÷£ºµ±t=2ʱ£¬DH=AH=4£¬ÔòHΪADµÄÖе㣬Èç´ðͼ1Ëùʾ£®
ÓÖ¡ßEF¡ÍAD£¬
¡àEFΪADµÄ´¹Ö±Æ½·ÖÏߣ¬
¡àAE=DE£¬AF=DF£®
¡ßAB=AC£¬AD¡ÍBCÓÚµãD£¬
¡àAD¡ÍBC£¬¡ÏB=¡ÏC£®
¡àEF¡ÎBC£¬
¡à¡ÏAEF=¡ÏB£¬¡ÏAFE=¡ÏC£¬
¡à¡ÏAEF=¡ÏAFE£¬
¡àAE=AF£¬
¡àAE=AF=DE=DF£¬¼´ËıßÐÎAEDFΪÁâÐΣ®

£¨2£©½â£ºÈç´ðͼ2Ëùʾ£¬ÓÉ£¨1£©ÖªEF¡ÎBC£¬
¡à¡÷AEF¡×¡÷ABC£®
¡à$\frac{EF}{BC}=\frac{AH}{AD}$£¬¼´$\frac{EF}{10}=\frac{8-2t}{8}$£®
½âµÃ£ºEF=10-$\frac{5}{2}$t£®
S¡÷PEF=$\frac{1}{2}$EF•DH=$\frac{1}{2}$£¨10-$\frac{5}{2}$t£©•2t=-$\frac{5}{2}$t2+10t=-$\frac{5}{2}$£¨t-2£©2+10£¨0£¼t£¼$\frac{10}{3}$£©£¬
¡àµ±t=2Ãëʱ£¬S¡÷PEF´æÔÚ×î´óÖµ£¬×î´óֵΪ10cm2£¬´ËʱBP=3t=6cm£®

µãÆÀ ±¾ÌâÊÇÔ˶¯ÐÍ×ÛºÏÌ⣬Éæ¼°¶¯µãÓ붯ÏßÁ½ÖÖÔ˶¯ÀàÐÍ£®µÚ£¨1£©ÎÊ¿¼²éÁËÁâÐεĶ¨Ò壻µÚ£¨2£©ÎÊ¿¼²éÁËÏàËÆÈý½ÇÐΡ¢Í¼ÐÎÃæ»ý¼°¶þ´Îº¯ÊýµÄ¼«Öµ£¬ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖʱíʾ³öEFµÄ³¤ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¡÷ABCÖУ¬AB=AC£¬¡ÏBAC=90¡ã£¬Ö±½Ç¡ÏEPFµÄ¶¥µãPÊÇBCÖе㣬Á½±ßPE¡¢PF·Ö±ð½»AB¡¢ACÓÚµãE¡¢F£¬¸ø³öµÄÒÔÏÂËĸö½áÂÛ£º
¢ÙAE=CF£» ¢Ú¡÷EPFÒ»¶¨ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ» ¢ÛSËıßÐÎAEPF=$\frac{1}{2}$S¡÷ABC£»
¢Üµ±¡ÏEPFÔÚ¡÷ABCÄÚÈƶ¥µãPÐýתʱʼÖÕÓÐEF=AP£®£¨µãE²»ÓëA¡¢BÖغϣ©£¬
ÉÏÊö½áÂÛÖÐʼÖÕÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®¢Ù¢ÜB£®¢Ù¢ÚC£®¢Ù¢Ú¢ÛD£®¢Ù¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÒÑÖª¡ÏBOC=2¡ÏAOC£¬ODƽ·Ö¡ÏAOB£¬ÇÒ¡ÏAOC=40¡ã£®
Ç󣺣¨1£©¡ÏAOBµÄ¶ÈÊý£»£¨2£©¡ÏCODµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¸ù¾Ýƽ·½²î¹«Ê½£º£¨$\sqrt{2}+1$£©£¨$\sqrt{2}-1$£©=£¨$\sqrt{2}$£©2-1=1£¬Óɴ˵õ½$\frac{1}{\sqrt{2}+1}=\sqrt{2}-1$£¬ÓÉ´ËÎÒÃÇ¿ÉÒԵõ½ÏÂÃæµÄ¹æÂÉ£¬Çë¸ù¾Ý¹æÂɽâ´ðºóÃæµÄÎÊÌ⣺
µÚ1ʽ$\frac{1}{\sqrt{2}+1}=\sqrt{2}-1$             µÚ2ʽ$\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}$
µÚ3ʽ$\frac{1}{\sqrt{4}+\sqrt{3}}=\sqrt{4}-\sqrt{3}$          µÚ4ʽ$\frac{1}{\sqrt{5}+\sqrt{4}}=\sqrt{5}-\sqrt{4}$£®
¡­
£¨1£©Çëд³öµÚn¸öʽ×Ó£»
£¨2£©Èô$\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4+\sqrt{3}}}+¡­+$$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=19£¬ÇónµÄÖµ£»
£¨3£©Çë˵Ã÷£º$\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+¡­+$$\frac{1}{\sqrt{10}+\sqrt{9}}$£¼3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÎÒ¹úÄϺ£º£ÓòÃæ»ýΪ3500000km2£¬ÓÿÆѧ¼ÇÊý·¨±íʾ3500000Ϊ3.5¡Á106£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{20}=2\sqrt{10}$B£®$\sqrt{9}=¡À3$C£®$\sqrt{4}-\sqrt{2}=\sqrt{2}$D£®$\sqrt{£¨-5£©^{2}}$=5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨a+b£©2=a2+b2B£®a2-b2=£¨a-b£©2C£®£¨2x£©3=6x3D£®x5¡Âx3=x2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺£¨$\sqrt{3}$£©2+2sin30¡ã-£¨-2015£©0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªa=$\sqrt{3}$£¬Ôò´úÊýʽa2-1µÄÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸